116 research outputs found

    A novel mutation in STK11 gene is associated with Peutz-Jeghers Syndrome in Indian patients

    Get PDF
    BACKGROUND: Peutz-Jeghers syndrome (PJS) is a rare multi-organ cancer syndrome and understanding its genetic basis may help comprehend the molecular mechanism of familial cancer. A number of germ line mutations in the STK11 gene, encoding a serine threonine kinase have been reported in these patients. However, STK11 mutations do not explain all PJS cases. An earlier study reported absence of STK11 mutations in two Indian families and suggested another potential locus on 19q13.4 in one of them. METHODS: We sequenced the promoter and the coding region including the splice-site junctions of the STK11 gene in 16 affected members from ten well-characterized Indian PJS families with a positive family history. RESULTS: We did not observe any of the reported mutations in the STK11 gene in the index patients from these families. We identified a novel pathogenic mutation (c.790_793 delTTTG) in the STK11 gene in one index patient (10%) and three members of his family. The mutation resulted in a frame-shift leading to premature termination of the STK11 protein at 286(th )codon, disruption of kinase domain and complete loss of C-terminal regulatory domain. Based on these results, we could offer predictive genetic testing, prenatal diagnosis and genetic counselling to other members of the family. CONCLUSION: Ours is the first study reporting the presence of STK11 mutation in Indian PJS patients. It also suggests that reported mutations in the STK11 gene are not responsible for the disease and novel mutations also do not account for many Indian PJS patients. Large-scale genomic deletions in the STK11 gene or another locus may be associated with the PJS phenotype in India and are worth future investigation

    Role of LKB1 in lung cancer development

    Get PDF
    Three phenotypically related genetic syndromes and their lesions (LKB1, PTEN, and TSC1/2) are identified as frequently altered in lung cancer. LKB1, a kinase inactivated in 30% of lung cancers, is discussed in this review. Loss of LKB1 regulation often coincident with KRAS activation allows for unchecked growth and the metabolic capacity to accommodate the proliferation

    Gene Expression of the Tumour Suppressor LKB1 Is Mediated by Sp1, NF-Y and FOXO Transcription Factors

    Get PDF
    The serine/threonine kinase LKB1 is a tumour suppressor that regulates multiple biological pathways, including cell cycle control, cell polarity and energy metabolism by direct phosphorylation of 14 different AMP-activated protein kinase (AMPK) family members. Although many downstream targets have been described, the regulation of LKB1 gene expression is still poorly understood. In this study, we performed a functional analysis of the human LKB1 upstream regulatory region. We used 200 base pair deletion constructs of the 5′-flanking region fused to a luciferase reporter to identify the core promoter. It encompasses nucleotides −345 to +52 relative to the transcription start site and coincides with a DNase I hypersensitive site. Based on extensive deletion and substitution mutant analysis of the LKB1 promoter, we identified four cis-acting elements which are critical for transcriptional activation. Using electrophoretic mobility shift assays as well as chromatin immunoprecipitations, we demonstrate that the transcription factors Sp1, NF-Y and two forkhead box O (FOXO) family members FOXO3 and FOXO4 bind to these elements. Overexpression of these factors significantly increased the LKB1 promoter activity. Conversely, small interfering RNAs directed against NF-Y alpha and the two FOXO proteins greatly reduced endogenous LKB1 expression and phosphorylation of LKB1's main substrate AMPK in three different cell lines. Taken together, these results demonstrate that Sp1, NF-Y and FOXO transcription factors are involved in the regulation of LKB1 transcription

    Mutations in STK11 gene in Czech Peutz-Jeghers patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peutz-Jeghers syndrome (PJS) is an autosomal dominant hereditary disease characterized by mucocutaneous pigmentation and gastrointestinal hamartomatous polyposis. The germline mutations in the serine/threonine kinase 11 (<it>STK11</it>) gene have been shown to be associated with the disease. Individuals with PJS are at increased risk for development of various neoplasms. The aim of the present study was to characterize the genotype and phenotype of Czech patients with PJS.</p> <p>Methods</p> <p>We examined genomic DNA of 8 individuals from five Czech families by sequencing analysis of <it>STK11 </it>gene, covering its promotor region, the entire coding region and the splice-site boundaries, and by multiplex ligation-dependent probe amplification (MLPA) assay designed for the identification of large exonic deletions or duplications of <it>STK11 </it>gene.</p> <p>Results</p> <p>We found pathogenic mutations in <it>STK11 </it>gene in two families fulfilling the diagnostic criteria of PJS and in one of three sporadic cases not complying with the criteria. The patient with the frameshift mutation in <it>STK11 </it>gene developed aggressive gastric cancer. No other studied proband has developed a carcinoma so far.</p> <p>Conclusion</p> <p>Our results showed that a germline mutation of <it>STK11 </it>gene can be found not only in probands fulfilling the PJS diagnostic criteria, but also in some sporadic cases not complying with the criteria. Moreover, we observed a new case of aggressive gastric cancer in a young patient with a frameshift mutation of <it>STK11 </it>gene.</p
    corecore