50 research outputs found

    Persistent risk of subsequent procedures and mortality in patients after interrupted aortic arch repair: A Congenital Heart Surgeons' Society study

    Get PDF
    ObjectiveMultiple subsequent procedures directed at the arch and/or the left ventricular outflow tract are frequently required after interrupted aortic arch repair. We the investigated patterns and factors associated with these subsequent procedures and mortality.MethodsWe reviewed the data from 447 patients with interrupted aortic arch at 33 institutions enrolled from 1987 to 1997. We classified the subsequent procedures by type (catheter-based or surgical) and focus (arch, left ventricular outflow tract, and “other” cardiovascular lesions). We used competing risks and modulated renewal analysis to explore subsequent procedures.ResultsThere were 158 subsequent arch and 100 left ventricular outflow tract procedures. Freedom from death at 21 years was 60% overall. The risk of additional subsequent arch procedures decreased after the first subsequent arch procedure in the acute phase, but did not significantly change in the chronic phase. The risk of additional subsequent left ventricular outflow tract procedures increased after the first subsequent left ventricular outflow tract procedure in the chronic phase. The risk factors for subsequent arch procedures and mortality, but not for subsequent outflow track procedures, were related in a complex way to previous procedures and their timing.ConclusionsInterrupted aortic arch is a chronic disease in which patients often undergo multiple subsequent procedures with persistent risk for additional intervention and mortality. The risk factors are related to the nature and timing of previous procedures and to the morphology and details of the index procedure. Interrupted aortic arch should be considered a chronic disorder

    Management of colorectal cancer presenting with synchronous liver metastases

    Get PDF
    Up to a fifth of patients with colorectal cancer (CRC) present with synchronous hepatic metastases. In patients with CRC who present without intestinal obstruction or perforation and in whom comprehensive whole-body imaging confirms the absence of extrahepatic disease, evidence indicates a state of equipoise between several different management pathways, none of which has demonstrated superiority. Neoadjuvant systemic chemotherapy is advocated by current guidelines, but must be integrated with surgical management in order to remove the primary tumour and liver metastatic burden. Surgery for CRC with synchronous liver metastases can take a number of forms: the 'classic' approach, involving initial colorectal resection, interval chemotherapy and liver resection as the final step; simultaneous removal of the liver and bowel tumours with neoadjuvant or adjuvant chemotherapy; or a 'liver-first' approach (before or after systemic chemotherapy) with removal of the colorectal tumour as the final procedure. In patients with rectal primary tumours, the liver-first approach can potentially avoid rectal surgery in patients with a complete response to chemoradiotherapy. We overview the importance of precise nomenclature, the influence of clinical presentation on treatment options, and the need for accurate, up-to-date surgical terminology, staging tests and contemporary management options in CRC and synchronous hepatic metastatic disease, with an emphasis on multidisciplinary care

    The multi-societal European consensus on the terminology, diagnosis and management of patients with synchronous colorectal cancer and liver metastases:an E-AHPBA consensus in partnership with ESSO, ESCP, ESGAR, and CIRSE

    Get PDF
    Background: Contemporary management of patients with synchronous colorectal cancer and liver metastases is complex. The aim of this project was to provide a practical framework for care of patients with synchronous colorectal cancer and liver metastases with a focus on terminology, diagnosis and management. Methods: This project was a multi-organisational, multidisciplinary consensus. The consensus group produced statements which focused on terminology, diagnosis and management. Statements were refined during an online Delphi process and those with 70% agreement or above were reviewed at a final meeting. Iterations of the report were shared by electronic mail to arrive at a final agreed document comprising twelve key statements. Results: Synchronous liver metastases are those detected at the time of presentation of the primary tumour. The term “early metachronous metastases” applies to those absent at presentation but detected within 12 months of diagnosis of the primary tumour with “late metachronous metastases” applied to those detected after 12 months. Disappearing metastases applies to lesions which are no longer detectable on MR scan after systemic chemotherapy. Guidance was provided on the recommended composition of tumour boards and clinical assessment in emergency and elective settings. The consensus focused on treatment pathways including systemic chemotherapy, synchronous surgery and the staged approach with either colorectal or liver-directed surgery as first step. Management of pulmonary metastases and the role of minimally invasive surgery was discussed. Conclusions: The recommendations of this contemporary consensus provide information of practical value to clinicians managing patients with synchronous colorectal cancer and liver metastases

    Recognition of Dimeric Lewis X by Anti-Dimeric Lex Antibody SH2

    No full text
    The carbohydrate antigen dimeric Lewis X (DimLex), which accumulates in colonic and liver adenocarcinomas, is a valuable target to develop anti-cancer therapeutics. Using the native DimLex antigen as a vaccine would elicit an autoimmune response against the Lex antigen found on normal, healthy cells. Thus, we aim to study the immunogenic potential of DimLex and search internal epitopes displayed by DimLex that remain to be recognized by anti-DimLex monoclonal antibodies (mAbs) but no longer possess epitopes recognized by anti-Lex mAbs. In this context, we attempted to map the epitope recognized by anti-DimLex mAb SH2 by titrations and competitive inhibition experiments using oligosaccharide fragments of DimLex as well as Lex analogues. We compare our results with that reported for anti-Lex mAb SH1 and anti-polymeric Lex mAbs 1G5F6 and 291-2G3-A. While SH1 recognizes an epitope localized to the non-reducing end Lex trisaccharide, SH2, 1G5F6, and 291-2G3-A have greater affinity for DimLex conjugates than for Lex conjugates. We show, however, that the Lex trisaccharide is still an important recognition element for SH2, which (like 1G5F6 and 291-2G3-A) makes contacts with all three sugar units of Lex. In contrast to mAb SH1, anti-polymeric Lex mAbs make contact with the GlcNAc acetamido group, suggesting that epitopes extend further from the non-reducing end Lex. Results with SH2 show that this epitope is only recognized when DimLex is presented by glycoconjugates. We have reported that DimLex adopts two conformations around the β-d-GlcNAc-(1→3)-d-Gal bond connecting the Lex trisaccharides. We propose that only one of these conformations is recognized by SH2 and that this conformation is favored when the hexasaccharide is presented as part of a glycoconjugate such as DimLex-bovine serum albumin (DimLex-BSA). Proper presentation of the oligosaccharide candidate via conjugation to a protein or lipid is essential for the design of an anti-cancer vaccine or immunotherapeutic based on DimLex

    Recognition of Dimeric Lewis X by Anti-Dimeric Lex Antibody SH2

    No full text
    The carbohydrate antigen dimeric Lewis X (DimLex), which accumulates in colonic and liver adenocarcinomas, is a valuable target to develop anti-cancer therapeutics. Using the native DimLex antigen as a vaccine would elicit an autoimmune response against the Lex antigen found on normal, healthy cells. Thus, we aim to study the immunogenic potential of DimLex and search internal epitopes displayed by DimLex that remain to be recognized by anti-DimLex monoclonal antibodies (mAbs) but no longer possess epitopes recognized by anti-Lex mAbs. In this context, we attempted to map the epitope recognized by anti-DimLex mAb SH2 by titrations and competitive inhibition experiments using oligosaccharide fragments of DimLex as well as Lex analogues. We compare our results with that reported for anti-Lex mAb SH1 and anti-polymeric Lex mAbs 1G5F6 and 291-2G3-A. While SH1 recognizes an epitope localized to the non-reducing end Lex trisaccharide, SH2, 1G5F6, and 291-2G3-A have greater affinity for DimLex conjugates than for Lex conjugates. We show, however, that the Lex trisaccharide is still an important recognition element for SH2, which (like 1G5F6 and 291-2G3-A) makes contacts with all three sugar units of Lex. In contrast to mAb SH1, anti-polymeric Lex mAbs make contact with the GlcNAc acetamido group, suggesting that epitopes extend further from the non-reducing end Lex. Results with SH2 show that this epitope is only recognized when DimLex is presented by glycoconjugates. We have reported that DimLex adopts two conformations around the β-d-GlcNAc-(1→3)-d-Gal bond connecting the Lex trisaccharides. We propose that only one of these conformations is recognized by SH2 and that this conformation is favored when the hexasaccharide is presented as part of a glycoconjugate such as DimLex-bovine serum albumin (DimLex-BSA). Proper presentation of the oligosaccharide candidate via conjugation to a protein or lipid is essential for the design of an anti-cancer vaccine or immunotherapeutic based on DimLex

    Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions

    No full text
    According to one influential view, two specialized parieto-frontal circuits control prehension: a dorsomedial stream for hand transport during reaching and a dorsolateral stream for preshaping the fingers during grasping. However, recent evidence argues that an area within the dorsomedial stream–macaque area V6A and, its putative human homolog, superior parietal occipital cortex (SPOC) – encodes both hand transport and grip formation. We tested whether planning varied hand actions modulates functional connectivity between left SPOC and ipsilateral primary motor cortex (M1) using a dual-site, paired-pulse transcranial magnetic stimulation paradigm with two coils (dsTMS). Participants performed three different hand actions to a target object comprising a small cylinder atop a larger cylinder. These actions were: reaching-to-grasp the top (GT) using a precision grip, reaching-to-grasp the bottom (GB) using a whole-hand grip, or reaching-to-touch (Touch) the side of the target object without forming a grip. Motor-evoked potentials (MEPs) from TMS to M1, with or without preceding TMS to SPOC, were recorded from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) hand muscles in two experiments that varied timing parameters (the stimulus onset asynchrony, SOA, between the ‘GO’ cue and stimulation and interpulse interval, IPI, between SPOC and M1 stimulation). We found that preparatory response amplitudes in the SPOC-M1 circuit of different hand muscles were selectively modulated early in the motor plan for different types of grasps. First, based on SPOC-M1 interactions, across two experiments, the role of the ADM was facilitated during a whole-hand grasp of a large object (GB) relative to other conditions under certain timing parameters (SOA = 150 msec; IPI = 6 msec). Second, the role of the FDI was facilitated during hand action planning compared to rest. These findings suggest that the human dorsomedial parieto-motor stream plays a causal role in planning grip formation for object-directed actions
    corecore