187 research outputs found

    Utilizing cytokines to function-enable human NK cells for the immunotherapy of cancer

    Get PDF
    Natural killer (NK) cells are innate lymphoid cells important for host defense against pathogens and mediate antitumor immunity. Cytokine receptors transduce important signals that regulate proliferation, survival, activation status, and trigger effector functions. Here, we review the roles of major cytokines that regulate human NK cell development, survival, and function, including IL-2, IL-12, IL-15, IL-18, and IL-21, and their translation to the clinic as immunotherapy agents. We highlight a recent development in NK cell biology, the identification of innate NK cell memory, and focus on cytokine-induced memory-like (CIML) NK cells that result from a brief, combined activation with IL-12, IL-15, and IL-18. This activation results in long lived NK cells that exhibit enhanced functionality when they encounter a secondary stimulation and provides a new approach to enable NK cells for enhanced responsiveness to infection and cancer. An improved understanding of the cellular and molecular aspects of cytokine-cytokine receptor signals has led to a resurgence of interest in the clinical use of cytokines that sustain and/or activate NK cell antitumor potential. In the future, such strategies will be combined with negative regulatory signal blockade and enhanced recognition to comprehensively enhance NK cells for immunotherapy

    MicroRNA regulation of natural killer cells

    Get PDF
    Natural killer (NK) cells are innate immune lymphocytes critical for host defense against viral infection and surveillance against malignant transformation. MicroRNAs (miRNAs) are a family of small, non-coding RNAs that regulate a wide variety of cellular processes. Recent advances have highlighted the importance of miRNA-mediated post-transcriptional regulation in NK cell development, maturation, and function. This review focuses on several facets of this regulatory mechanism in NK cells: (1) the expressed NK cell miRNA transcriptome; (2) the impact of total miRNA deficiency on NK cells; (3) the role of specific miRNAs regulating NK cell development, survival, and maturation; (4) the intrinsic role of miRNAs regulating NK cell function, including cytokine production, proliferation, and cytotoxicity; and (5) the role of NK cell miRNAs in disease. Currently our knowledge of how miRNAs regulate NK cell biology is limited, and thus we also explore key open questions in the field, as well as approaches and techniques to ascertain the role of individual miRNAs as important molecular regulators

    Natural killer cell regulation by microRNAs in health and disease

    Get PDF
    Natural killer (NK) cells are innate immune lymphocytes that are critical for normal host defense against infections and mediate antitumor immune responses. MicroRNAs (miRNAs) are a family of small, noncoding RNAs that posttranscriptionally regulate the majority of cellular processes and pathways. Our understanding of how miRNAs regulate NK cells biology is limited, but recent studies have provided novel insight into their expression by NK cells, and how they contribute to the regulation of NK cell development, maturation, survival, and effector function. Here, we review the expression of miRNAs by NK cells, their contribution to cell intrinsic and extrinsic control of NK cell development and effector response, and their dysregulation in NK cell malignancies

    Natural Killer Cell Regulation by MicroRNAs in Health and Disease

    Get PDF
    Natural killer (NK) cells are innate immune lymphocytes that are critical for normal host defense against infections and mediate antitumor immune responses. MicroRNAs (miRNAs) are a family of small, noncoding RNAs that posttranscriptionally regulate the majority of cellular processes and pathways. Our understanding of how miRNAs regulate NK cells biology is limited, but recent studies have provided novel insight into their expression by NK cells, and how they contribute to the regulation of NK cell development, maturation, survival, and effector function. Here, we review the expression of miRNAs by NK cells, their contribution to cell intrinsic and extrinsic control of NK cell development and effector response, and their dysregulation in NK cell malignancies

    Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer

    Get PDF
    PurposeAdvanced thyroid cancer responds poorly to most therapies. New therapies and combinations are needed. The aim of this study was to examine both in vitro and in vivo activity of two relatively new histone deacetylase inhibitors (HDACIs), belinostat and panobinostat, and a variety of tyrosine kinase inhibitors (TKIs) against a panel of nine human thyroid cancer cell lines.MethodsThe anti-proliferative activity and the effects of HDACIs, TKIs and their combinations on thyroid cancer cells were determined by cytotoxicity assays, microarray and immunoblot analyses. Synergism between HDACIs and TKIs was assessed by the median effects model of Chou-Talalay (Calcusyn(®)).ResultsBelinostat and panobinostat were active against the thyroid cancer cell lines irrespective of their mutational composition, and belinostat was effective in preventing growth of human thyroid cancer xenografts in immunodeficient mice. Further studies showed that both HDACIs induced apoptosis. HDACI also elevated acetylated histone 3, p21(Waf), and PARP, and decreased levels of phosphorylated ERK and AKT (Ser473). RNA assay analysis suggested both HDACIs modulated genes associated with the cell cycle, DNA damage and apoptosis. Most of the TKI (pazopanib, motesanib, sorafenib and dasatinib) were either inactive in vitro or were active only at high doses. However, the novel combinations of either pazopanib or dasatinib TKIs with either belinostat or panobinostat synergistically inhibited cell growth of thyroid cancer cells in vitro.ConclusionsIn summary, these HDACIs either alone or combined with selected TKIs may have a role in treatment of aggressive thyroid cancer

    Androgenic and Estrogenic Response of Green Mussel Extracts from Singapore’s Coastal Environment Using a Human Cell-Based Bioassay

    Get PDF
    In the last decade, evidence of endocrine disruption in biota exposed to environmental pollutants has raised serious concern. Human cell-based bioassays have been developed to evaluate induced androgenic and estrogenic activities of chemical compounds. However, bioassays have been sparsely applied to environmental samples. In this study we present data on sex hormone activities in the green mussel, Perna viridis, in Singapore’s coastal waters. P. viridis is a common bioindicator of marine contamination, and this study is a follow-up to an earlier investigation that reported the presence of sex hormone activities in seawater samples from Singapore’s coastal environment. Specimens were collected from eight locations around the Singapore coastline and analyzed for persistent organic pollutants (POPs) and heavy metals. Tissue extracts were then screened for activities on androgen receptors (ARs) and estrogen receptors (ER-α and ER-β) using a reporter gene bio-assay based on a HeLa human cell line. Mussel extracts alone did not exhibit AR activity, but in the presence of the reference androgenic hormone dihydrotestosterone (DHT), activities were up to 340% higher than those observed for DHT alone. Peak activities were observed in locations adjacent to industrial and shipping activities. Estrogenic activities of the mussel extract both alone and in the presence of reference hormone were positive. Correlations were statistically investigated between sex hormone activities, levels of pollutants in the mussel tissues, and various biological parameters (specimen size, sex ratio, lipid and moisture content). Significant correlations exist between AR activities, in the presence of DHT, and total concentration of POPs (r = 0.725, p < 0.05)

    Optical Propagation and Communication

    Get PDF
    Contains summary of research and reports on four research projects.National Science Foundation (Grant ECS81-20637)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)Maryland Procurement Office (Contract MDA904-84-C-6037)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941

    Optical Propagation and Communication

    Get PDF
    Contains research summary and reports on four research projects.National Science Foundation (Grant ECS81-20637)National Science Foundation (Grant ECS85-09143)Maryland Procurement Office (Contract MDA904-84-C-6037)National Science Foundation (Grant ECS84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract NO0014-80-C-0941

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on four research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)National Science Foundation (Grant ECS 84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941
    corecore