39 research outputs found

    Geoengineering climate Change: Treating the symptom over the cause?

    Full text link

    Climate simulation of the latest Permian: Implications for mass extinction

    Get PDF
    This report presents the results of climate modeling research which indicates that elevated levels of carbon dioxide in the atmosphere at the end of the Permian period led to climatic conditions inhospitable to both marine and terrestrial life. The Permian-Triassic boundary (about 251 million years ago) was the time of the largest known mass extinction in Earth's history, when greater than ninety percent of all marine species, and approximately seventy percent of all terrestrial species, died out. The model, which used paleogeography and paleotopography correct for the time period, indicated that warm high-latitude surface air temperatures and elevated carbon dioxide levels may have resulted in slowed circulation and stagnant, anoxic conditions in Earth's oceans. The report also suggests that the excess carbon dioxide (and sulfur dioxide) may have originated from volcanic activity associated with eruption of the Siberian Trap flood basalts, which took place at the same time. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional

    The Community Climate System Model version 3 (CCSM3)

    Get PDF
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2122–2143, doi:10.1175/JCLI3761.1.The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.We would like to acknowledge the substantial contributions to and support for the CCSM project from the National Science Foundation (NSF), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration

    Geoengineering climate Change: Treating the symptom over the cause?

    No full text

    Climate simulation of the latest Permian: Implications for mass extinction: Geology,

    No full text
    ABSTRACT Life at the Permian-Triassic boundary (ca. 251 Ma) underwent the largest disruption in Earth's history. Paleoclimatic data indicate that Earth was significantly warmer than present and that much of the ocean was anoxic or euxinic for an extended period of time. We present results from the first fully coupled comprehensive climate model using paleogeography for this time period. The coupled climate system model simulates warm highlatitude surface air temperatures related to elevated carbon dioxide levels and a stagnate global ocean circulation in concert with paleodata indicating low oxygen levels at ocean depth. This is the first climate simulation that captures these observed features of this time period

    Earth's Global Energy Budget

    No full text
    corecore