94 research outputs found

    A Chemical Biology Approach to Developing STAT Inhibitors: Molecular Strategies for Accelerating Clinical Translation

    Get PDF
    STAT transcription factors transduce signals from the cell surface to the nucleus, where they regulate the expression of genes that control proliferation, survival, self-renewal, and other critical cellular functions. Under normal physiological conditions, the activation of STATs is tightly regulated. In cancer, by contrast, STAT proteins, particularly STAT3 and STAT5, become activated constitutively, thereby driving the malignant phenotype of cancer cells. Since these proteins are largely dispensable in the function of normal adult cells, STATs represent a potentially important target for cancer therapy. Although transcription factors have traditionally been viewed as suboptimal targets for pharmacological inhibition, chemical biology approaches have been particularly fruitful in identifying compounds that can modulate this pathway through a variety of mechanisms. STAT inhibitors have notable anti-cancer effects in many tumor systems, show synergy with other therapeutic modalities, and have the potential to eradicate tumor stem cells. Furthermore, STAT inhibitors identified through the screening of chemical libraries can then be employed in large scale analyses such as gene expression profiling, RNA interference screens, or large-scale tumor cell line profiling. Data derived from these studies can then provide key insights into mechanisms of STAT signal transduction, as well as inform the rational design of targeted therapeutic strategies for cancer patients

    p190RhoGAP is the convergence point of adhesion signals from α5β1 integrin and syndecan-4

    Get PDF
    The fibronectin receptors α5β1 integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rho–guanosine triphosphatase–activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of α5β1 integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of α5β1 integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C α by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by α5β1 integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion

    Rnd Proteins Function as RhoA Antagonists by Activating p190 RhoGAP

    Get PDF
    AbstractBackground: The Rnd proteins Rnd1, Rnd2, and Rnd3 (RhoE) comprise a unique branch of Rho-family G-proteins that lack intrinsic GTPase activity and consequently remain constitutively "active." Prior studies have suggested that Rnd proteins play pivotal roles in cell regulation by counteracting the biological functions of the RhoA GTPase, but the molecular basis for this antagonism is unknown. Possible mechanisms by which Rnd proteins could function as RhoA antagonists include sequestration of RhoA effector molecules, inhibition of guanine nucleotide exchange factors, and activation of GTPase-activating proteins (GAPs) for RhoA. However, effector molecules of Rnd proteins with such properties have not been identified.Results: Here we identify p190 RhoGAP (p190), the most abundant GAP for RhoA in cells, as an interactor with Rnd proteins and show that this interaction is mediated by a p190 region that is distinct from the GAP domain. Using Rnd3-RhoA chimeras and Rnd3 mutants defective in p190 binding, as well as p190-deficient cells, we demonstrate that the cellular effects of Rnd expression are mediated by p190. We moreover show that Rnd proteins increase the GAP activity of p190 toward GTP bound RhoA and, finally, demonstrate that expression of Rnd3 leads to reduced cellular levels of RhoA-GTP by a p190-dependent mechanism.Conclusions: Our results identify p190 RhoGAPs as effectors of Rnd proteins and demonstrate a novel mechanism by which Rnd proteins function as antagonists of RhoA

    Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression

    Get PDF
    Introduction: Rho signaling regulates key cellular processes including proliferation, survival, and migration, and it has been implicated in the development of many types of cancer including breast cancer. P190B Rho GTPase activating protein (RhoGAP) functions as a major inhibitor of the Rho GTPases. P190B is required for mammary gland morphogenesis, and overexpression of p190B in the mammary gland induces hyperplastic lesions. Hence, we hypothesized that p190B may play a pivotal role in mammary tumorigenesis. Methods: To investigate the effects of loss of p190B function on mammary tumor progression, p190B heterozygous mice were crossed with an MMTV-Neu breast cancer model. Effects of p190B deficiency on tumor latency, multiplicity, growth, preneoplastic progression and metastasis were evaluated. To investigate potential differences in tumor angiogenesis between the two groups, immunohistochemistry to detect von Willebrand factor was performed and quantified. To examine gene expression of potential mediators of the angiogenic switch, an angiogenesis PCR array was utilized and results were confirmed using immunohistochemistry. Finally, reciprocal transplantation of tumor fragments was performed to determine the impact of stromal deficiency of p190B on tumor angiogenesis. Results: P190B deficiency reduced tumor penetrance (53% of p190B+/−Neup190B^{+/-}Neu mice vs. 100% of p190B+/+Neup190B^{+/+}Neu mice formed tumors) and markedly delayed tumor onset by an average of 46 weeks. Tumor multiplicity was also decreased, but an increase in the number of preneoplastic lesions was detected indicating that p190B deficiency inhibited preneoplastic progression. Angiogenesis was decreased in the p190B heterozygous tumors, and expression of a potent angiogenic inhibitor, thrombospondin-1, was elevated in p190B+/−Neup190B^{+/-}Neu mammary glands. Transplantation of p190B+/−Neup190B^{+/-}Neu tumor fragments into wild-type recipients restored tumor angiogenesis. Strikingly, p190B+/+Neup190B^{+/+}Neu tumor fragments were unable to grow when transplanted into p190B+/−Neup190B^{+/-}Neu recipients. Conclusions: These data suggest that p190B haploinsufficiency in the epithelium inhibits MMTV-Neu tumor initiation. Furthermore, p190B deficiency in the vasculature is responsible, in part, for the inhibition of MMTV-Neu tumor progression
    • …
    corecore