260 research outputs found

    Geometrization of metric boundary data for Einstein's equations

    Get PDF
    The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A well-posed initial boundary value problem based upon a new formulation of constraint-preserving boundary conditions of the Sommerfeld type has recently been established for such systems. In this paper these boundary conditions are recast in a geometric form. This serves as a first step toward their application to other metric formulations of Einstein's equations.Comment: Article to appear in Gen. Rel. Grav. volume in memory of Juergen Ehler

    Gain reversal studies in photorefractive waveguides

    No full text
    We report on low-loss photorefractive BaTiO3 H+ implanted waveguides exhibiting reversal of two-beam-coupling gain direction, caused by induced colour centres. The anomalous two-beam-coupling gain has been investigated as a function of the input beam ratio

    Some extremal functions in Fourier analysis, III

    Full text link
    We obtain the best approximation in L1(R)L^1(\R), by entire functions of exponential type, for a class of even functions that includes eλxe^{-\lambda|x|}, where λ>0\lambda >0, logx\log |x| and xα|x|^{\alpha}, where 1<α<1-1 < \alpha < 1. We also give periodic versions of these results where the approximating functions are trigonometric polynomials of bounded degree.Comment: 26 pages. Submitte

    The incorporation of matter into characteristic numerical relativity

    Full text link
    A code that implements Einstein equations in the characteristic formulation in 3D has been developed and thoroughly tested for the vacuum case. Here, we describe how to incorporate matter, in the form of a perfect fluid, into the code. The extended code has been written and validated in a number of cases. It is stable and capable of contributing towards an understanding of a number of problems in black hole astrophysics.Comment: 15 pages + 4 (eps) figure

    Investigating the autonomic nervous system and cognitive functions as potential mediators of an association between cardiovascular disease and driving performance

    Get PDF
    Abstract: Cardiovascular disease (CVD) impacts the autonomic nervous system and cognitive functions related to activities of daily living, including driving an automobile. Although CVD has been linked to unsafe driving, mechanisms underlying this relationship remain elusive. The aim of this study was to examine the role of cognitive functions and the autonomic nervous system as potential mediators of driving performance. Nineteen individuals having recently suffered a cardiac event and sixteen individuals with no history of CVD completed a simulated drive using a STISIM simulator to assess driving performance. Heart rate was recorded throughout testing using a Polar RS800CX heart rate monitor and measures of executive, orienting and alerting functions were obtained through the Attention Network Test. We used the Baron and Kenny analysis method to assess potential mediating effects of the relationship between CVD and driving performance. Executive function was the only potential mediator investigated to be associated with driving (p < 0.01) and CVD (p < 0.05), however, it did not appear to play a mediating role (p = 0.28). These results suggest that individuals with CVD exhibit decrements in complex cognitive tasks such as driving and that further research is needed to better understand the mechanisms underlying this relationship

    BaTiO<sub>3</sub> waveguide self-pumped phase conjugator

    No full text
    For the first time to our knowledge, self-pumped phase conjugation is reported in a planar waveguide structure in a BaTiO3 single crystal. The waveguide was fabricated by the technique of ion implantation, with 1.5-MeV H+ ions at a dose of 1016 ions/cm2. Phase-conjugate reflectivities &gt;20% have been measured for waveguide self-pumped phase conjugation, and, for a given input power, an order-of-magnitude reduction in the response time is observed in the waveguide compared with the bulk. The fidelity of phase conjugation in the guide is also discussed

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p
    corecore