1,211 research outputs found

    Identification of White Adipocyte Progenitor Cells In Vivo

    Get PDF
    SummaryThe increased white adipose tissue (WAT) mass associated with obesity is the result of both hyperplasia and hypertrophy of adipocytes. However, the mechanisms controlling adipocyte number are unknown in part because the identity of the physiological adipocyte progenitor cells has not been defined in vivo. In this report, we employ a variety of approaches, including a noninvasive assay for following fat mass reconstitution in vivo, to identify a subpopulation of early adipocyte progenitor cells (Lin−:CD29+:CD34+:Sca-1+:CD24+) resident in adult WAT. When injected into the residual fat pads of A-Zip lipodystrophic mice, these cells reconstitute a normal WAT depot and rescue the diabetic phenotype that develops in these animals. This report provides the identification of an undifferentiated adipocyte precursor subpopulation resident within the adipose tissue stroma that is capable of proliferating and differentiating into an adipose depot in vivo

    An evaluation of machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma on the AHOD0031 trial: A report from the Children's Oncology Group

    Full text link
    In this manuscript we analyze a data set containing information on children with Hodgkin Lymphoma (HL) enrolled on a clinical trial. Treatments received and survival status were collected together with other covariates such as demographics and clinical measurements. Our main task is to explore the potential of machine learning (ML) algorithms in a survival analysis context in order to improve over the Cox Proportional Hazard (CoxPH) model. We discuss the weaknesses of the CoxPH model we would like to improve upon and then we introduce multiple algorithms, from well-established ones to state-of-the-art models, that solve these issues. We then compare every model according to the concordance index and the brier score. Finally, we produce a series of recommendations, based on our experience, for practitioners that would like to benefit from the recent advances in artificial intelligence

    Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics

    Get PDF
    Dissimilatory metal-reducing bacteria are widespread in terrestrial ecosystems, especially in anaerobic soils and sediments. Thermodynamically, dissimilatory metal reduction is more favorable than sulfate reduction and methanogenesis but less favorable than denitrification and aerobic respiration. It is critical to understand the complex relationships, including the absence or presence of terminal electron acceptors, that govern microbial competition and coexistence in anaerobic soils and sediments, because subsurface microbial processes can effect greenhouse gas emissions from soils, possibly resulting in impacts at the global scale. Here, we elucidated the effect of an inexhaustible, ferrous-iron and humic-substance mimicking terminal electron acceptor by deploying potentiostatically poised electrodes in the sediment of a very specific stream riparian zone in Upstate New York state. At two sites within the same stream riparian zone during the course of six weeks in the spring of 2013, we measured CH4 and N2/N2O emissions from soil chambers containing either poised or unpoised electrodes, and we harvested biofilms from the electrodes to quantify microbial community dynamics. At the upstream site, which had a lower vegetation cover and highest soil temperatures, the poised electrodes inhibited CH4 emissions by ~45% (when normalized to remove temporal effects). CH4 emissions were not significantly impacted at the downstream site. N2/N2O emissions were generally low at both sites and were not impacted by poised electrodes. We did not find a direct link between bioelectrochemical treatment and microbial community membership; however, we did find a correspondence between environment/function and microbial community dynamics

    The Asymmetric Merger of Black Holes

    Get PDF
    We study event horizons of non-axisymmetric black holes and show how features found in axisymmetric studies of colliding black holes and of toroidal black holes are non-generic and how new features emerge. Most of the details of black hole formation and black hole merger are known only in the axisymmetric case, in which numerical evolution has successfully produced dynamical space-times. The work that is presented here uses a new approach to construct the geometry of the event horizon, not by locating it in a given spacetime, but by direct construction. In the axisymmetric case, our method produces the familiar pair-of-pants structure found in previous numerical simulations of black hole mergers, as well as event horizons that go through a toroidal epoch as discovered in the collapse of rotating matter. The main purpose of this paper is to show how new - substantially different - features emerge in the non-axisymmetric case. In particular, we show how black holes generically go through a toroidal phase before they become spherical, and how this fits together with the merger of black holes.Comment: 28 pages, 10 figures, uses REVTEX. Improved quality figures and additional color images are provided at http://www.phyast.pitt.edu/~shusa/EH

    Managing marine disease emergencies in an era of rapid change

    Get PDF
    Infectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require
    corecore