53 research outputs found

    Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    Get PDF
    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications

    A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes

    Get PDF
    Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860

    Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    Get PDF
    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 μM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART

    Reversion of the M184V Mutation in Simian Immunodeficiency Virus Reverse Transcriptase Is Selected by Tenofovir, Even in the Presence of Lamivudine

    No full text
    The methionine-to-valine mutation in codon 184 (M184V) in reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) confers resistance to (−)-2′-deoxy-3′-thiacytidine (3TC; lamivudine) and increased sensitivity to 9-[2-(phosphonomethoxy)propyl]adenine (PMPA; tenofovir). We have used the SIV model to evaluate the effect of the M184V mutation on the emergence of resistance to the combination of 3TC plus PMPA. A site-directed mutant of SIVmac239 containing M184V (SIVmac239-184V) was used to select for resistance to both 3TC and PMPA by serial passage in the presence of increasing concentrations of both drugs. Under these selection conditions, the M184V mutation reverted in the majority of the selections. Variants resistant to both drugs were found to have the lysine-to-arginine mutation at codon 65 (K65R), which has previously been associated with resistance to PMPA in both SIV and HIV. Similarly, in rhesus macaques infected with SIVmac239-184V for 46 weeks and treated daily with (−)-2′-deoxy-5-fluoro-3′-thiacytidine [(−)-FTC], there was no reversion of M184V, but this mutation reverted to 184 M in all three animals within 24 weeks of treatment with (−)-FTC and PMPA. Although the addition of PMPA to the (−)-FTC therapy induced a decrease in virus loads in plasma, these loads eventually returned to pre-PMPA levels in each case. All animals receiving this combination developed the K65R mutation. These results demonstrate that the combination of PMPA with 3TC or (−)-FTC selects for the K65R mutation and against the M184V mutation in SIV RT

    Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells

    No full text
    <div><p>HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs.</p></div

    Lipidomic Analysis Links Mycobactin Synthase K to Iron Uptake and Virulence in <i>M</i>. <i>tuberculosis</i>

    No full text
    <div><p>The prolonged survival of <i>Mycobacterium tuberculosis</i> (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual <i>mbt</i> genes remain largely untested. Through targeted gene deletion and global lipidomic profiling of intact bacteria, we identify the essential biochemical functions of two mycobactin synthases, MbtK and MbtN, in siderophore biosynthesis and their effects on bacterial growth <i>in vitro</i> and <i>in vivo</i>. The deletion mutant, Δ<i>mbtN</i>, produces only saturated mycobactin and carboxymycobactin, demonstrating an essential function of MbtN as the mycobactin dehydrogenase, which affects antigenicity but not iron uptake or M. tb growth. In contrast, deletion of <i>mbtK</i> ablated all known forms of mycobactin and its deoxy precursors, defining MbtK as the essential acyl transferase. The <i>mbtK</i> mutant showed markedly reduced iron scavenging and growth <i>in vitro</i>. Further, Δ<i>mbtK</i> was attenuated for growth in mice, demonstrating a non-redundant role of hydroxamate siderophores in virulence, even when other M. tb iron scavenging mechanisms are operative. The unbiased lipidomic approach also revealed unexpected consequences of perturbing mycobactin biosynthesis, including extreme depletion of mycobacterial phospholipids. Thus, lipidomic profiling highlights connections among iron acquisition, phospholipid homeostasis, and virulence, and identifies MbtK as a lynchpin at the crossroads of these phenotypes.</p></div

    HIVxCD3 DARTs retarget cytolytic CD3<sup>+</sup> T-cells to Env-expressing HIV-infected CD4<sup>+</sup> T-cells.

    No full text
    <p>(A) Mechanism of cytolysis. The CD3 arm (orange) of the bi-specific DART binds to CD3 at the surface of CD3<sup>+</sup> T-cells and the HIV arm (blue) binds to HIV Env at the surface of HIV-infected CD4<sup>+</sup> T-cells. Cell surface Env may be in the form of functional mature trimers or nonfunctional variant forms such as cleaved or uncleaved gp160 monomers or gp41 stumps [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005233#ppat.1005233.ref043" target="_blank">43</a>]. DART-mediated engagement of target and effector cells results in activation of effector cell cytolytic responses and target cell killing. (B) Variety of Env epitopes targeted by HIVxCD3 DARTs. Locations on the mature HIV-1 Env trimer surface of epitopes recognized by the anti-Env Abs used as sources of the HIV binding arms of DARTs are shown. Broadly neutralizing Abs PGT121, PGT145, VRC01 and 10E8 target epitopes located in the V3 glycan (N332; green), V2 glycan (N160K, blue), CD4 binding site (CD4bs, orange) and gp41 MPER (cyan), respectively, that are preferentially expressed on functional Env trimers, whereas non-neutralizing Abs A32 and 7B2 target epitopes located in CD4-induced sites (CD4i conformation epitopes are not visible in the depicted pre-CD4 binding Env structure) and in the gp41 stalk (cyan), respectively, that are preferentially expressed on nonfunctional forms of Env. The depicted structure of Env trimer is derived from pdb 4NCO.</p
    corecore