19 research outputs found

    NT113, a Pan-ERBB Inhibitor with High Brain Penetrance, Inhibits the Growth of Glioblastoma Xenografts with EGFR Amplification

    No full text
    This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor IHC reactivity for indication of treatment effect on proliferation and apoptotic response; Western blot analysis for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high-performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot analysis results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM

    NT113, a Pan-ERBB Inhibitor with High Brain Penetrance, Inhibits the Growth of Glioblastoma Xenografts with EGFR

    No full text
    This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor immunohistochemical (IHC) reactivity for indication of treatment effect on proliferation and apoptotic response; western blot for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM

    NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma

    Full text link
    PURPOSE To assess whether reirradiation (re-RT) and concurrent bevacizumab (BEV) improve overall survival (OS) and/or progression-free survival (PFS), compared with BEV alone in recurrent glioblastoma (GBM). The primary objective was OS, and secondary objectives included PFS, response rate, and treatment adverse events (AEs) including delayed CNS toxicities. METHODS NRG Oncology/RTOG1205 is a prospective, phase II, randomized trial of re-RT and BEV versus BEV alone. Stratification factors included age, resection, and Karnofsky performance status (KPS). Patients with recurrent GBM with imaging evidence of tumor progression ≥ 6 months from completion of prior chemo-RT were eligible. Patients were randomly assigned 1:1 to re-RT, 35 Gy in 10 fractions, with concurrent BEV IV 10 mg/kg once in every 2 weeks or BEV alone until progression. RESULTS From December 2012 to April 2016, 182 patients were randomly assigned, of whom 170 were eligible. Patient characteristics were well balanced between arms. The median follow-up for censored patients was 12.8 months. There was no improvement in OS for BEV + RT, hazard ratio, 0.98; 80% CI, 0.79 to 1.23; P = .46; the median survival time was 10.1 versus 9.7 months for BEV + RT versus BEV alone. The median PFS for BEV + RT was 7.1 versus 3.8 months for BEV, hazard ratio, 0.73; 95% CI, 0.53 to 1.0; P = .05. The 6-month PFS rate improved from 29.1% (95% CI, 19.1 to 39.1) for BEV to 54.3% (95% CI, 43.5 to 65.1) for BEV + RT, P = .001. Treatment was well tolerated. There were a 5% rate of acute grade 3+ treatment-related AEs and no delayed high-grade AEs. Most patients died of recurrent GBM. CONCLUSION To our knowledge, NRG Oncology/RTOG1205 is the first prospective, randomized multi-institutional study to evaluate the safety and efficacy of re-RT in recurrent GBM using modern RT techniques. Overall, re-RT was shown to be safe and well tolerated. BEV + RT demonstrated a clinically meaningful improvement in PFS, specifically the 6-month PFS rate but no difference in OS

    Anticonvulsant prophylaxis and steroid use in adults with metastatic brain tumors: summary of SNO and ASCO endorsement of the Congress of Neurological Surgeons guidelines

    Full text link
    BACKGROUND: The Congress of Neurological Surgeons (CNS) has developed a series of guidelines on the treatment of adults with metastatic brain tumors, including systemic therapy and supportive care topics. ASCO has a policy and set of procedures for endorsing clinical practice guidelines that have been developed by other professional organizations. METHODS: Two CNS Guidelines were reviewed for developmental rigor by methodologists and an independent multi-disciplinary Expert Panel was formed to review the content and assess agreement with the recommendations. The expert panel voted to endorse the two guidelines and ASCO and SNO independently reviewed and approved the ASCO/SNO guideline endorsement. RESULTS: The ASCO/SNO Expert Panel determined that the recommendations from the CNS anticonvulsants and steroids guidelines, published January 9, 2019, are clear, thorough, and based upon the most relevant scientific evidence. ASCO/SNO endorsed these two CNS guidelines, with minor alterations. CONCLUSIONS: Key recommendations include: prophylactic anti-epileptic drugs were not recommended for routine use; corticosteroids (specifically dexamethasone) were recommended for temporary symptomatic relief in patients with neurologic symptoms and signs related to mass effect from brain metastases
    corecore