35 research outputs found

    Toward an Artificial Golgi: Redesigning the Biological Activities of Heparan Sulfate on a Digital Microfluidic Chip

    Get PDF
    Using digital microfluidics, recombinant enzyme technology, and magnetic nanoparticles, we have created a functional prototype of an artificial Golgi organelle. Analogous to the natural Golgi, which is responsible for the enzymatic modification of glycosaminoglycans immobilized on proteins, this artificial Golgi enzymatically modifies glycosaminoglycans, specifically heparin sulfate (HS) chains immobilized onto magnetic nanoparticles. Sulfo groups were transferred from adenosine 3′-phosphate 5′-phosphosulfate to the 3-hydroxyl group of the D-glucosamine residue in an immobilized HS chain using D-glucosaminyl 3-O-sulfotransferase. After modification, the nanoparticles with immobilized HS exhibited increased affinity for fluorescently labeled antithrombin III as detected by confocal microscopy. Since the biosynthesis of HS involves an array of specialized glycosyl transferases, epimerase, and sulfotransferases, this approach should mimic the synthesis of HS in vivo. Furthermore, our method demonstrates the feasibility of investigating the effects of multi-enzyme systems on the structure of final glycan products for HS-based glycomic studies

    pH-Induced Fusion and Lysis of Phosphatidylcholine Vesicles by the Hydrophobic Polyelectrolyte Poly(2-ethylacrylic Acid)

    No full text
    Poly(2-ethylacrylic acid) [PEAA] was shown to induce fusion of phosphatidylcholine bilayer membranes under mildly acidic conditions. The pH-dependent destabilization and fusion of extruded large unilamellar vesicles (LUVs) by PEAA was characterized by optical density measurements, transmission electron microscopy, and lipid-mixing and contents-release assays. Reduction of either the chain length or the polymer concentration caused the fusion and contents-release events to shift to lower pH values. Release of entrapped calcein was observed at pH values approximately 1 unit higher than those found to cause membrane fusion. Decreased levels of fusion were observed when the concentration of PEAA was lower than that of the lipid; however, quantitative release of encapsulated calcein could be effected at very low polymer concentrations (∼3% w/w PEAA/lipid)

    Free-Radical Synthesis of Poly(2-ethylacrylic acid) Fractions of Low Polydispersity: Effects of Molecular Weight and Polydispersity on the pH-Dependent Conformational Transition in Aqueous Solutions

    No full text
    The interaction of the hydrophobic polyelectrolyte, poly(2-ethylacrylic acid) [PEAA, 1], with phospholipid bilayer membranes has been studied extensively in this laboratory over the past fifteen years. This system has been tailored to create lipid vesicles that respond via release of contents to changes in pH, temperature, light intensity, or concentration of a solute such as glucose

    Artificial Organelles: Digital Microfluidic Platform for Proteoglycan and Glycoprotein Biosynthesis

    No full text
    The development of artificial organelles is a new, fast-growing field in which a variety of techniques have been employed. This article gives a brief overview of the history of artificial organelles, and describes the development of an artificial endoplasmic reticulum and Golgi organelle on a digital microfluidic platform. This device should be useful in high-throughput combinatorial proteoglycan/glycoprotein synthesis, providing critical information about the control of biosynthetic pathways for these important signaling molecules
    corecore