18 research outputs found

    JAGGED1 Espression is Associated with Prostate Cancer Metastasis and Recurrence

    No full text
    Recent studies suggest that NOTCH signaling can promote epithelial-mesenchymal transitions and augment signaling through AKT, an important growth and survival pathway in epithelial cells and prostate cancer in particular. Here we show that JAGGED1, a NOTCH receptor ligand, is significantly more highly expressed in metastatic prostate cancer as compared with localized prostate cancer or benign prostatic tissues, based on immunohistochemical analysis of JAGGED1 expression in human tumor samples from 154 men. Furthermore, high JAGGED1 expression in a subset of clinically localized tumors was significantly associated with recurrence, independent of other clinical parameters. These findings support a model in which dysregulation of JAGGED1 protein levels plays a role in prostate cancer progression and metastasis and suggest that JAGGED1 may be a useful marker in distinguishing indolent and aggressive prostate cancers

    Defining Aggressive Prostate Cancer Using a 12 Gene Model

    No full text
    The critical clinical question in prostate cancer research is to develop means of distinguishing aggressive from indolent disease. Using a combination of proteomic and expression array data, we identified a set of 40 genes with concordant dysregulation of protein products that could be evaluated in situ by quantitative immunohistochemistry. Using linear discriminant analysis, we determined that the optimal model to predict prostate cancer progression consisted of 12 proteins. Using a separate patient population, the transcriptional levels of the 12 genes encoding for these proteins predicted PSAfailure in 79 men following surgery for clinically localized prostate cancer (p=0.0015). This study demonstrates that cross platform models can lead to predictive models with the possible advantage of being more robust through this selection proces

    Postinduction Dexamethasone and Individualized Dosing of Escherichia Coli

    No full text
    PURPOSE: We assessed the toxicity and efficacy of dexamethasone and a novel dosing method of Escherichia coli L-asparaginase (EC-Asnase) in children and adolescents with newly diagnosed acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS: Patients achieving complete remission (CR) on Dana-Farber Cancer Institute ALL Consortium Protocol 00-01 were eligible for random assignment to 1) dexamethasone or prednisone, administered as 5-day pulses, every 3 weeks, and 2) weekly EC-Asnase, administered as a 25,000 IU/m(2) fixed dose (FD) or individualized dose (ID) starting at 12,500-IU/m(2), adjusted every 3 weeks based on nadir serum asparaginase activity (NSAA) determinations. RESULTS: Between 2000 and 2004, 492 evaluable patients (ages 1 to 18 years) enrolled; 473 patients (96%) achieved CR. Four hundred eight patients (86%) participated in the corticosteroid randomization and 384 patients (81%) in the EC-Asnase randomization. With 4.9 years of median follow-up, dexamethasone was associated with superior 5-year event-free survival (EFS; 90% v 81% for prednisone; P = .01) but higher rates of infection (P = .03) and, in older children, higher cumulative incidence of osteonecrosis (P = .02) and fracture (P = .06). ID EC-Asnase had superior 5-year EFS (90% v 82% for FD; P = .04), but did not reduce the frequency of asparaginase-related toxicity. Multivariable analysis identified both dexamethasone and ID EC-Asnase as independent predictors of favorable EFS. CONCLUSION: There was no overall difference in skeletal toxicity by corticosteroid type; dexamethasone was associated with more infections and, in older children, increased incidence of osteonecrosis and fracture. There was no difference in asparaginase-related toxicity by EC-Asnase dosing method. Dexamethasone and ID EC-Asnase were each associated with superior EFS. Monitoring NSAA during treatment with EC-Asnase may be an effective strategy to improve outcome in pediatric ALL

    A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome

    No full text
    BACKGROUND: Idiopathic hypereosinophilic syndrome involves a prolonged state of eosinophilia associated with organ dysfunction. It is of unknown cause. Recent reports of responses to imatinib in patients with the syndrome suggested that an activated kinase such as ABL, platelet-derived growth factor receptor (PDGFR), or KIT, all of which are inhibited by imatinib, might be the cause. METHODS: We treated 11 patients with the hypereosinophilic syndrome with imatinib and identified the molecular basis for the response. RESULTS: Nine of the 11 patients treated with imatinib had responses lasting more than three months in which the eosinophil count returned to normal. One such patient had a complex chromosomal abnormality, leading to the identification of a fusion of the Fip1-like 1 (FIP1L1) gene to the PDGFRalpha (PDGFRA) gene generated by an interstitial deletion on chromosome 4q12. FIP1L1-PDGFRalpha is a constitutively activated tyrosine kinase that transforms hematopoietic cells and is inhibited by imatinib (50 percent inhibitory concentration, 3.2 nM). The FIP1L1-PDGFRA fusion gene was subsequently detected in 9 of 16 patients with the syndrome and in 5 of the 9 patients with responses to imatinib that lasted more than three months. Relapse in one patient correlated with the appearance of a T674I mutation in PDGFRA that confers resistance to imatinib. CONCLUSIONS: The hypereosinophilic syndrome may result from a novel fusion tyrosine kinase - FIP1L1-PDGFRalpha - that is a consequence of an interstitial chromosomal deletion. The acquisition of a T674I resistance mutation at the time of relapse demonstrates that FIP1L1-PDGFRalpha is the target of imatinib. Our data indicate that the deletion of genetic material may result in gain-of-function fusion protein
    corecore