2,910 research outputs found

    Hydrodynamic Irreversibility in Particle Suspensions with Non-Uniform Strain

    Get PDF
    A dynamical phase transition from reversible to irreversible behavior occurs when particle suspensions are subjected to uniform oscillatory shear, even in the Stokes flow limit. We consider a more general situation with non-uniform strain (e.g. oscillatory channel flow), which is observed to exhibit markedly different dynamics. Self-organization and shear-induced migration only partially explain the delayed, simultaneous onset of irreversibility across the channel. The onset of irreversibility is accompanied by long-range correlated particle motion. This motion leads to particle activity even at the channel center, where the strain is negligible, and prevents the system from evolving into a reversible state

    G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Get PDF
    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation in the CONUS and Mexico in support of NASA's Carbon Monitoring System (CMS) and AMIGA-Carb (AMerican Icesat Glas Assessment of Carbon). For NASA's CMS, wall-to-wall G-LiHT data have been acquired over intensive study sites with historic LiDAR datasets, dense inventory data, stem maps and flux tower observations. For AMIGA-Carb, G-LiHT transects have been acquired over ICESat tracks and USDA-FS inventory plots throughout the CONUS, and similar data will be acquired in Mexico during 2013. This talk will highlight recent science results from continental-scale transects landscape-scale deployments of G-LiHT, as well as seasonal forest dynamics from repeat pass G-LiHT acquisitions

    UK perspective research landscape for offshore renewable energy and its role in delivering net zero

    Get PDF
    Acknowledgements This work was conducted within the Supergen Offshore Renewable Energy (ORE) Hub, a £9 Million programme 2018–2023 funded by Engineering and Physical Sciences Research Council (EPSRC) under grant no. EP/S000747/1.Peer reviewedPublisher PD

    Genomic Classifier Augments the Role of Pathological Features in Identifying Optimal Candidates for Adjuvant Radiation Therapy in Patients With Prostate Cancer: Development and Internal Validation of a Multivariable Prognostic Model.

    Get PDF
    Purpose Despite documented oncologic benefit, use of postoperative adjuvant radiotherapy (aRT) in patients with prostate cancer is still limited in the United States. We aimed to develop and internally validate a risk-stratification tool incorporating the Decipher score, along with routinely available clinicopathologic features, to identify patients who would benefit the most from aRT. Patient and Methods Our cohort included 512 patients with prostate cancer treated with radical prostatectomy at one of four US academic centers between 1990 and 2010. All patients had ≥ pT3a disease, positive surgical margins, and/or pathologic lymph node invasion. Multivariable Cox regression analysis tested the relationship between available predictors (including Decipher score) and clinical recurrence (CR), which were then used to develop a novel risk-stratification tool. Our study adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for development of prognostic models. Results Overall, 21.9% of patients received aRT. Median follow-up in censored patients was 8.3 years. The 10-year CR rate was 4.9% vs. 17.4% in patients treated with aRT versus initial observation ( P \u3c .001). Pathologic T3b/T4 stage, Gleason score 8-10, lymph node invasion, and Decipher score \u3e 0.6 were independent predictors of CR (all P \u3c .01). The cumulative number of risk factors was 0, 1, 2, and 3 to 4 in 46.5%, 28.9%, 17.2%, and 7.4% of patients, respectively. aRT was associated with decreased CR rate in patients with two or more risk factors (10-year CR rate 10.1% in aRT v 42.1% in initial observation; P = .012), but not in those with fewer than two risk factors ( P = .18). Conclusion Using the new model to indicate aRT might reduce overtreatment, decrease unnecessary adverse effects, and reduce risk of CR in the subset of patients (approximately 25% of all patients with aggressive pathologic disease in our cohort) who benefit from this therapy

    Magnetic ground state of the Kitaev Na2_2Co2_2TeO6_6 spin liquid candidate

    Full text link
    As a candidate Kitaev material, Na2_2Co2_2TeO6_6 exhibits intriguing magnetism on a honeycomb lattice that is believed to be C3C_3-symmetric. Here we report a neutron diffraction study of high quality single crystals under aa-axis magnetic fields. Our data support the less common notion of a magnetic ground state that corresponds to a triple-q\mathbf{q} magnetic structure with C3C_3 symmetry, rather than the multi-domain zigzag structure typically assumed in prototype Kitaev spin liquid candidates. In particular, we find that the field is unable to repopulate the supposed zigzag domains, where the only alternative explanation is that the domains are strongly pinned by hitherto unidentified structural reasons. If the triple-q\mathbf{q} structure is correct then this requires reevaluation of many candidate Kitaev materials. We also find that fields beyond about 10 Tesla suppress the long range antiferromagnetic order, allowing new magnetic behavior to emerge different from that expected for a spin liquid.Comment: 4 pages, 4 figures, plus Supplemental Materia
    corecore