164 research outputs found

    A genomic approach to the identification and characterization of HOXA13 functional binding elements

    Get PDF
    HOX proteins are important transcriptional regulators in mammalian embryonic development and are dysregulated in human cancers. However, there are few known direct HOX target genes and their mechanisms of regulation are incompletely understood. To isolate and characterize gene segments through which HOX proteins regulate transcription we used cesium chloride centrifugation-based chromatin purification and immunoprecipitation (ChIP). From NIH 3T3-derived HOXA13-FLAG expressing cells, 33% of randomly selected, ChIP clones were reproducibly enriched. Hox-enriched fragments (HEFs) were more AT-rich compared with cloned fragments that failed reproducible ChIP. All HEFs augmented transcription of a heterologous promoter upon coexpression with HOXA13. One HEF was from intron 2 of Enpp2, a gene highly upregulated in these cells and has been implicated in cell motility. Using Enpp2 as a candidate direct target, we identified three additional HEFs upstream of the transcription start site. HOXA13 upregulated transcription from an Enpp2 promoter construct containing these sites, and each site was necessary for full HOXA13-induced expression. Lastly, given that HOX proteins have been demonstrated to interact with histone deacetylases and/or CBP, we explored whether histone acetylation changed at Enpp2 upon HOXA13-induced activation. No change in the general histone acetylation state was observed. Our results support models in which occupation of multiple HOX binding sites is associated with highly activated genes

    Expanding the phenotypic spectrum of MBOAT7‐related intellectual disability

    Full text link
    MBOAT7 gene pathogenic variants are a newly discovered and rare cause for intellectual disability, autism spectrum disorder (ASD), seizures, truncal hypotonia, appendicular hypertonia, and below average head sizes (ranging from −1 to −3 standard deviations). There have been only 16 individuals previously reported who have MBOAT7‐related intellectual disability, all of whom were younger than 10 years old and from consanguineous relationships. Thus, there is a lack of phenotypic information for adolescent and adult individuals with this disorder. Medical genetics and psychiatric evaluations in a 14‐year‐old female patient with a history of global developmental delay, intellectual disability, overgrowth with macrocephaly, metrorrhagia, seizures, basal ganglia hyperintensities, nystagmus, strabismus with amblyopia, ASD, anxiety, attention deficit hyperactivity disorder (ADHD), aggressive outbursts, and hyperphagia included a karyotype, methylation polymerase chain reaction for Prader‐Willi/Angelman syndrome, chromosome microarray, and whole exome sequencing (WES), ADOS2, and ADI‐R. WES identified a homozygous, likely pathogenic variant in the MBOAT7 gene (c.855‐2A>G). This is the oldest known patient with MBOAT7‐related intellectual disability, whose unique features compared with previously described individuals include overgrowth with macrocephaly, metrorrhagia, ophthalmological abnormalities, basal ganglia hyperintensities, unspecified anxiety disorder, and ADHD; combined type; and hyperphagia with the absence of appendicular hypertonia and cortical atrophy. More individuals need to be identified in order to delineate the full clinical spectrum of this disorder.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151268/1/ajmgb32749_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151268/2/ajmgb32749.pd

    Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability

    Get PDF
    Interactions with co-factors provide a means by which HOX proteins exert specificity. To identify candidate protein interactors of HOXA13, we created and screened an E11.5–E12.5, distal limb bud yeast two-hybrid prey library. Among the interactors, we isolated the BMP-signaling effector Smad5, which interacted with the paralogous HOXD13 but not with HOXA11 or HOXA9, revealing unique interaction capabilities of the AbdB-like HOX proteins. Using deletion mutants, we determined that the MH2 domain of Smad5 is necessary for HOXA13 interaction. This is the first report demonstrating an interaction between HOX proteins and the MH2 domain of Smad proteins. HOXA13 and HOXD13 also bind to other BMP and TGF-ÎČ/Activin-regulated Smad proteins including Smad1 and Smad2, but not Smad4. Furthermore, HOXD13 could be co-immunoprecipitated with Smad1 from cells. Expression of HOXA13, HOXD13 or a HOXD13 homeodomain mutant (HOXD13(IQN>AAA)) antagonized TGF-ÎČ-stimulated transcriptional activation of the pAdtrack-3TP-Lux reporter vector in Mv1Lu cells as well as the Smad3/Smad4-activated pTRS(6)-E1b promoter in Hep3B cells. Finally, using mammalian one-hybrid assay, we show that transcriptional activation by a GAL4/Smad3-C-terminus fusion protein is specifically inhibited by HOXA13. Our results identify a new co-factor for HOX group 13 proteins and suggest that HOX proteins may modulate Smad-mediated transcriptional activity through protein–protein interactions without the requirement for HOX monomeric DNA-binding capability

    Maternal intrachromosomal insertional translocation leads to recurrent 1q21.3q23.3 deletion in two siblings

    Full text link
    We identified a novel 6.33 Mb deletion of 1q21.3q23.3 (hg18; chr1: 153035245–159367106) in two siblings presenting with blepharophimosis, ptosis, microbrachycephaly, severe psychomotor, and intellectual disability. Additional common features include small corpus callosum, normal birth length and head circumference, postnatal growth restriction, low anterior hairline, upturned nose, bilateral preauricular pits, widely spaced teeth, gingival hypertrophy, left ventricular dilatation with decreased biventricular systolic function, delayed bone age, 5th finger clinodactyly, short 3rd digit, hyperconvex nails, obstructive and central sleep apnea, and bilateral heel contractures. Fluorescence in situ hybridization (FISH) performed in the mother of both children showed an apparently balanced, intrachromosomal insertional translocation of 1q21.3q23.3 to 1q42.12. The sibling recurrence likely arose by a maternal meiotic crossing over on the rearranged chromosome 1 between the deleted region and the insertion. We hypothesize that the decreased cardiac function and contractures may be related to LMNA haploinsufficiency. This case illustrates the importance of FISH when attempting to determine inheritance of a copy‐number variation and emphasize the value of evaluating known haploinsufficiency phenotypes for genes in deleted regions. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93664/1/35563_ftp.pd

    Two highly polymorphic CA repeats in the Menkes gene (ATP7A)

    Full text link
    Two highly polymorphic CA repeats have been identified in the Menkes gene ( ATP7A ). These repeats should be useful for prenatal diagnosis and carrier detection in families with Menkes disease and X-linked cutis laxa. The observed heterozygosity for these two repeats was 0.778 and 0.60 in Centre d'Etude du Polymorphisme Humaine (CEPH) families.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47641/1/439_2004_Article_BF00210423.pd

    Analysis of De Novo HOXA 13 Polyalanine Expansions Supports Replication Slippage Without Repair in Their Generation

    Full text link
    Polyalanine repeat expansion diseases are hypothesized to result from unequal chromosomal recombination, yet mechanistic studies are lacking. We identified two de novo cases of hand‐foot‐genital syndrome (HFGS) associated with polyalanine expansions in HOXA13 that afforded rare opportunities to investigate the mechanism. The first patient with HFGS was heterozygous for a de novo nine codon polyalanine expansion. Haplotype investigation showed that the expansion arose on the maternally inherited chromosome but not through unequal crossing over between homologs, leaving unequal sister chromatid exchange during mitosis or meiosis or slipped mispairing as possible explanations. The asymptomatic father of the second patient with HFGS was mosaic for a six codon polyalanine expansion. Multiple tissue PCR and clonal analysis of paternal fibroblasts showed only expansion/WT and WT/WT clones, and haplotype data showed that two unaffected offspring inherited the same paternal allele without the expansion, supporting a postzygotic origin. Absence of the contracted allele in the mosaic father does not support sister chromatid exchange in the origin of the expansion. Mosaicism for HOXA13 polyalanine expansions may be associated with a normal phenotype, making examination of parental DNA essential in apparently de novo HFGS cases to predict accurate recurrence risks. We could not find an example in the literature where unequal sister chromatid exchange has been proven for any polyalanine expansion, suggesting that the principal mechanism for polyalanine expansions (and contractions) is slipped mispairing without repair or that the true frequency of unequal sister chromatid exchange involving these repeats is low. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97454/1/ajmga35843.pd

    Compound heterozygosity for loss‐of‐function FARSB variants in a patient with classic features of recessive aminoacyl‐tRNA synthetase‐related disease

    Full text link
    Aminoacyl‐tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in phenotypically diverse dominant and recessive human diseases. The charging of tRNAPHE with phenylalanine is performed by a tetrameric enzyme that contains two alpha (FARSA) and two beta (FARSB) subunits. To date, mutations in the genes encoding these subunits (FARSA and FARSB) have not been implicated in any human disease. Here, we describe a patient with a severe, lethal, multisystem, developmental phenotype who was compound heterozygous for FARSB variants: p.Thr256Met and p.His496Lysfs*14. Expression studies using fibroblasts isolated from the proband revealed a severe depletion of both FARSB and FARSA protein levels. These data indicate that the FARSB variants destabilize total phenylalanyl‐tRNA synthetase levels, thus causing a loss‐of‐function effect. Importantly, our patient shows strong phenotypic overlap with patients that have recessive diseases associated with other ARS loci; these observations strongly support the pathogenicity of the identified FARSB variants and are consistent with the essential function of phenylalanyl‐tRNA synthetase in human cells. In sum, our clinical, genetic, and functional analyses revealed the first FARSB variants associated with a human disease phenotype and expand the locus heterogeneity of ARS‐related human disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144241/1/humu23424_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144241/2/humu23424.pd

    Potential association of LMNA-associated generalized lipodystrophy with juvenile dermatomyositis

    Full text link
    Abstract Background Juvenile dermatomyositis (JDM) is an auto-immune muscle disease which presents with skin manifestations and muscle weakness. At least 10% of the patients with JDM present with acquired lipodystrophy. Laminopathies are caused by mutations in the lamin genes and cover a wide spectrum of diseases including muscular dystrophies and lipodystrophy. The p.T10I LMNA variant is associated with a phenotype of generalized lipodystrophy that has also been called atypical progeroid syndrome. Case presentation A previously healthy female presented with bilateral proximal lower extremity muscle weakness at age 4. She was diagnosed with JDM based on her clinical presentation, laboratory tests and magnetic resonance imaging (MRI). She had subcutaneous fat loss which started in her extremities and progressed to her whole body. At age 7, she had diabetes, hypertriglyceridemia, low leptin levels and low body fat on dual energy X-ray absorptiometry (DEXA) scan, and was diagnosed with acquired generalized lipodystrophy (AGL). Whole exome sequencing (WES) revealed a heterozygous c.29C > T; p.T10I missense pathogenic variant in LMNA, which encodes lamins A and C. Muscle biopsy confirmed JDM rather than muscular dystrophy, showing perifascicular atrophy and perivascular mononuclear cell infiltration. Immunofluroscence of skin fibroblasts confirmed nuclear atypia and fragmentation. Conclusions This is a unique case with p.T10I LMNA variant displaying concurrent JDM and AGL. This co-occurrence raises the intriguing possibility that LMNA, and possibly p.T10I, may have a pathogenic role in not only the occurrence of generalized lipodystrophy, but also juvenile dermatomyositis. Careful phenotypic characterization of additional patients with laminopathies as well as individuals with JDM is warranted.https://deepblue.lib.umich.edu/bitstream/2027.42/142870/1/40842_2018_Article_58.pd

    Exclusion of BMP6 as a candidate gene for cleidocranial dysplasia

    Full text link
    Cleidocranial dysplasia (CCD) is an autosomal dominant, generalized skeletal dysplasia in humans that has been mapped to the short arm of chromosome 6. We report linkage of a CCD mutation to 6p21 in a large family and exclude the bone morphogenetic protein 6 gene (BMP6) as a candidate for the disease by cytogenetic localization and genetic recombination. CCD was linked with a maximal two-point LOD score of 7.22 with marker D6S452 at Ξ = 0. One relative with a recombination between D6S451 and D6S459 and another individual with a recombination between D6S465 and CCD places the mutation within a 7 cM region between D6S451 and D6S465 at 6p21. A phage P1 genomic clone spanning most of the BMP6 gene hybridized to chromosome 6 in band region p23–p24 using FISH analysis, placing this gene cytogenetically more distal than the region of linkage for CCD. We derived a new polymorphic marker from this same P1 clone and found recombinations between the marker and CCD in this family. The results confirm the map position of CCD on 6p21, further refine the CCD genetic interval by identifying a recombination between D6S451 and D6S459, and exclude BMP6 as a candidate gene. Am. J. Med. Genet. 71:292–297, 1997. © 1997 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38269/1/9_ftp.pd
    • 

    corecore