21 research outputs found

    A Perspective on Unique Information: Directionality, Intuitions, and Secret Key Agreement

    Get PDF
    Recently, the partial information decomposition emerged as a promising framework for identifying the meaningful components of the information contained in a joint distribution. Its adoption and practical application, however, have been stymied by the lack of a generally-accepted method of quantifying its components. Here, we briefly discuss the bivariate (two-source) partial information decomposition and two implicitly directional interpretations used to intuitively motivate alternative component definitions. Drawing parallels with secret key agreement rates from information-theoretic cryptography, we demonstrate that these intuitions are mutually incompatible and suggest that this underlies the persistence of competing definitions and interpretations. Having highlighted this hitherto unacknowledged issue, we outline several possible solutions.Comment: 5 pages, 3 tables; http://csc.ucdavis.edu/~cmg/compmech/pubs/pid_intuition.ht

    Unique Information and Secret Key Agreement

    Get PDF
    The partial information decomposition (PID) is a promising framework for decomposing a joint random variable into the amount of influence each source variable Xi has on a target variable Y, relative to the other sources. For two sources, influence breaks down into the information that both X0 and X1 redundantly share with Y, what X0 uniquely shares with Y, what X1 uniquely shares with Y, and finally what X0 and X1 synergistically share with Y. Unfortunately, considerable disagreement has arisen as to how these four components should be quantified. Drawing from cryptography, we consider the secret key agreement rate as an operational method of quantifying unique informations. Secret key agreement rate comes in several forms, depending upon which parties are permitted to communicate. We demonstrate that three of these four forms are inconsistent with the PID. The remaining form implies certain interpretations as to the PID's meaning---interpretations not present in PID's definition but that, we argue, need to be explicit. These reveal an inconsistency between third-order connected information, two-way secret key agreement rate, and synergy. Similar difficulties arise with a popular PID measure in light the results here as well as from a maximum entropy viewpoint. We close by reviewing the challenges facing the PID.Comment: 9 pages, 3 figures, 4 tables; http://csc.ucdavis.edu/~cmg/compmech/pubs/pid_skar.htm. arXiv admin note: text overlap with arXiv:1808.0860

    Unique Information via Dependency Constraints

    Full text link
    The partial information decomposition (PID) is perhaps the leading proposal for resolving information shared between a set of sources and a target into redundant, synergistic, and unique constituents. Unfortunately, the PID framework has been hindered by a lack of a generally agreed-upon, multivariate method of quantifying the constituents. Here, we take a step toward rectifying this by developing a decomposition based on a new method that quantifies unique information. We first develop a broadly applicable method---the dependency decomposition---that delineates how statistical dependencies influence the structure of a joint distribution. The dependency decomposition then allows us to define a measure of the information about a target that can be uniquely attributed to a particular source as the least amount which the source-target statistical dependency can influence the information shared between the sources and the target. The result is the first measure that satisfies the core axioms of the PID framework while not satisfying the Blackwell relation, which depends on a particular interpretation of how the variables are related. This makes a key step forward to a practical PID.Comment: 15 pages, 7 figures, 2 tables, 3 appendices; http://csc.ucdavis.edu/~cmg/compmech/pubs/idep.ht

    Koopman Operator and its Approximations for Systems with Symmetries

    Get PDF
    Nonlinear dynamical systems with symmetries exhibit a rich variety of behaviors, including complex attractor-basin portraits and enhanced and suppressed bifurcations. Symmetry arguments provide a way to study these collective behaviors and to simplify their analysis. The Koopman operator is an infinite dimensional linear operator that fully captures a system's nonlinear dynamics through the linear evolution of functions of the state space. Importantly, in contrast with local linearization, it preserves a system's global nonlinear features. We demonstrate how the presence of symmetries affects the Koopman operator structure and its spectral properties. In fact, we show that symmetry considerations can also simplify finding the Koopman operator approximations using the extended and kernel dynamic mode decomposition methods (EDMD and kernel DMD). Specifically, representation theory allows us to demonstrate that an isotypic component basis induces block diagonal structure in operator approximations, revealing hidden organization. Practically, if the data is symmetric, the EDMD and kernel DMD methods can be modified to give more efficient computation of the Koopman operator approximation and its eigenvalues, eigenfunctions, and eigenmodes. Rounding out the development, we discuss the effect of measurement noise

    Evolution of opinions on social networks in the presence of competing committed groups

    Get PDF
    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions AA and BB, and constituting fractions pAp_A and pBp_B of the total population respectively, are present in the network. We show for stylized social networks (including Erd\H{o}s-R\'enyi random graphs and Barab\'asi-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB)(p_A,p_B) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.Comment: 23 pages: 15 pages + 7 figures (main text), 8 pages + 1 figure + 1 table (supplementary info
    corecore