30 research outputs found

    Path Puzzles: Discrete Tomography with a Path Constraint is Hard

    Full text link
    We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.Comment: 16 pages, 8 figures. Revised proof of Theorem 2.4. 2-page abstract appeared in Abstracts from the 20th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2017

    Rediscovering Forgotten Research: Sleeping Beauties at the University of Waterloo

    Get PDF
    An academic article is normally cited within a few years of publication, after which interest falls off as the research field moves on. However, an article is sometimes ignored for many years only to attract interest after a long period of dormancy. Such articles are called "Sleeping Beauties." A general characterization of this pattern has recently been defined and is used in this study to identify five Sleeping Beauties that were published by researchers at the University of Waterloo in the 1970s and 1980s. While a handful of studies have examined the occurrence of such Sleeping Beauties in specific fields of research or in a particular journal, none has yet identified these unusual articles in the context of the lasting impact of a university's research. This study is therefore a novel application of the latest technique for identifying Sleeping Beauties. The possibilities for using this unusual citation pattern in raising the profile of a university's research are discussed

    Computational Complexity of Generalized Push Fight

    Get PDF
    We analyze the computational complexity of optimally playing the two-player board game Push Fight, generalized to an arbitrary board and number of pieces. We prove that the game is PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular) hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn? One turn in Push Fight consists of up to two "moves" followed by a mandatory "push". With these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can be solved in polynomial time. If, however, the number of moves per turn is part of the input, the problem becomes NP-complete. On the other hand, without any limit on the number of moves per turn, the problem becomes polynomially solvable again

    Tatamibari Is NP-Complete

    Get PDF
    In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an m x n grid of cells, where each cell possibly contains a clue among ?, ?, ?. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing ? are square, rectangles containing ? are strictly longer horizontally than vertically, rectangles containing ? are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Σ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018

    Walking Through Doors Is Hard, Even Without Staircases: Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

    Get PDF
    A door gadget has two states and three tunnels that can be traversed by an agent (player, robot, etc.): the "open" and "close" tunnel sets the gadget's state to open and closed, respectively, while the "traverse" tunnel can be traversed if and only if the door is in the open state. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of such door gadgets, removing the traditional need for crossover gadgets and thereby simplifying past PSPACE-hardness proofs of Lemmings and Nintendo games Super Mario Bros., Legend of Zelda, and Donkey Kong Country. Our result holds in all but one of the possible local planar embedding of the open, close, and traverse tunnels within a door gadget; in the one remaining case, we prove NP-hardness. We also introduce and analyze a simpler type of door gadget, called the self-closing door. This gadget has two states and only two tunnels, similar to the "open" and "traverse" tunnels of doors, except that traversing the traverse tunnel also closes the door. In a variant called the symmetric self-closing door, the "open" tunnel can be traversed if and only if the door is closed. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of either type of self-closing door. Then we apply this framework to prove new PSPACE-hardness results for eight different 3D Mario games and Sokobond.Comment: Accepted to FUN2020, 35 pages, 41 figure

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Get PDF
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies

    Arithmetic Expression Construction

    Get PDF
    When can nn given numbers be combined using arithmetic operators from a given subset of {+,−,×,÷}\{+, -, \times, \div\} to obtain a given target number? We study three variations of this problem of Arithmetic Expression Construction: when the expression (1) is unconstrained; (2) has a specified pattern of parentheses and operators (and only the numbers need to be assigned to blanks); or (3) must match a specified ordering of the numbers (but the operators and parenthesization are free). For each of these variants, and many of the subsets of {+,−,×,÷}\{+,-,\times,\div\}, we prove the problem NP-complete, sometimes in the weak sense and sometimes in the strong sense. Most of these proofs make use of a "rational function framework" which proves equivalence of these problems for values in rational functions with values in positive integers.Comment: 36 pages, 5 figures. Full version of paper accepted to 31st International Symposium on Algorithms and Computation (ISAAC 2020
    corecore