
Arithmetic Expression Construction
Leo Alcock
Harvard University, Cambridge, MA, USA
leoalcock@college.harvard.edu

Sualeh Asif
MIT, Cambridge, MA, USA
sualeh@mit.edu

Jeffrey Bosboom
CSAIL, MIT, Cambridge, MA, USA
jbosboom@csail.mit.edu

Josh Brunner
CSAIL, MIT, Cambridge, MA, USA
brunnerj@mit.edu

Charlotte Chen
MIT, Cambridge, MA, USA
charlotte_z_chen@yahoo.com

Erik D. Demaine
CSAIL, MIT, Cambridge, MA, USA
edemaine@mit.edu

Rogers Epstein
CSAIL, MIT, Cambridge, MA, USA
rogersep@mit.edu

Adam Hesterberg
Harvard University, Cambridge, MA, USA
achesterberg@gmail.com

Lior Hirschfeld
MIT, Cambridge, MA, USA
liorh@mit.edu

William Hu
MIT, Cambridge, MA, USA
whu2704@mit.edu

Jayson Lynch
MIT, CSAIL, Cambridge, MA, USA
jaysonl@mit.edu

Sarah Scheffler
Boston University, Boston, MA, USA
sscheff@bu.edu

Lillian Zhang
MIT, Cambridge, MA, USA
lillianz@mit.edu

Abstract
When can n given numbers be combined using arithmetic operators from a given subset of
{+,−,×,÷} to obtain a given target number? We study three variations of this problem of
Arithmetic Expression Construction: when the expression (1) is unconstrained; (2) has a specified
pattern of parentheses and operators (and only the numbers need to be assigned to blanks); or
(3) must match a specified ordering of the numbers (but the operators and parenthesization are
free). For each of these variants, and many of the subsets of {+,−,×,÷}, we prove the problem
NP-complete, sometimes in the weak sense and sometimes in the strong sense. Most of these proofs
make use of a rational function framework which proves equivalence of these problems for values in
rational functions with values in positive integers.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases Hardness, algebraic complexity, expression trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.12

Related Version A full version of the paper is available at https://arxiv.org/abs/2011.11767.

Acknowledgements This work was initiated during open problem solving in the MIT class on
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892) taught by Erik Demaine in Spring
2019. We thank the other participants of that class – in particular, Josh Gruenstein, Mirai Ikebuchi,
and Vilhelm Andersen Woltz – for related discussions and providing an inspiring atmosphere.

1 Introduction

Algebraic complexity theory [2, 14] is broadly interested in the smallest or fastest arithmetic
circuit to compute a desired (multivariate) polynomial. An arithmetic circuit is a directed
acyclic graph where each source node represents an input and every other node is an arithmetic
operation, typically among {+,−,×,÷}, applied to the values of its incoming edges, and one

© Leo Alcock, Sualeh Asif, Jeffrey Bosboom, Josh Brunner, Charlotte Chen, Erik D. Demaine,
Rogers Epstein, Adam Hesterberg, Lior Hirschfeld, William Hu, Jayson Lynch, Sarah Scheffler, and
Lillian Zhang;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:leoalcock@college.harvard.edu
mailto:sualeh@mit.edu
mailto:jbosboom@csail.mit.edu
mailto:brunnerj@mit.edu
mailto:charlotte_z_chen@yahoo.com
https://orcid.org/0000-0003-3803-5703
mailto:edemaine@mit.edu
mailto:rogersep@mit.edu
mailto:achesterberg@gmail.com
mailto:liorh@mit.edu
mailto:whu2704@mit.edu
mailto:jaysonl@mit.edu
mailto:sscheff@bu.edu
mailto:lillianz@mit.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2020.12
https://arxiv.org/abs/2011.11767
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Arithmetic Expression Construction

sink vertex represents the output. One of the earliest papers on this topic is Scholz’s 1937
study of minimal addition chains [12], which is equivalent to finding the smallest circuit with
operation + that outputs a target value t. Scholz was motivated by efficient algorithms for
computing xn mod N . Minimal addition chains have been well-studied since; in particular,
the problem is NP-complete [5].

Algebraic computation models serve as a more restrictive model of computation, making
it easier to prove lower bounds. In cryptography, a common model is to limit computations
to a group or ring [10]. For example, Shoup [13] proves an exponential lower bound for
discrete logarithm in the generic group model, and Aggarwal and Maurer [1] prove that
RSA is equivalent to factoring in the generic ring model. Minimal addition chains is the
same problem as minimal group exponentiation in generic groups, and thus the problem has
received a lot of attention in algorithm design [7].

In our paper, we study a new, seemingly simpler type of problem, where the goal is
to design an expression instead of a circuit, i.e., a tree instead of a directed acyclic graph.
Specifically, the main Arithmetic Expression Construction (AEC) problem is as follows:

I Problem 1 ((L, ops)-AEC-Std / Standard).
Instance: A multiset of values A = {a1, a2, . . . , an} ⊆ L and a target value t ∈ L.
Question: Does there exist a parenthesized expression using any of the operations in ops
that contains each element of A exactly once and evaluates to t?

The problem (N, {+,−,×,÷})-AEC-Std naturally generalizes two games played by
humans. The 24 Game [15] is a card game dating back to the 1960s, where players race to
construct an arithmetic expression using four cards with values 1–9 (a standard deck without
face cards) that evaluates to 24. In the tabletop role-playing game Pathfinder, the Sacred
Geometry feat requires constructing an arithmetic expression using dice rolls that evaluate
to one of a specified set of prime constants.

In this paper, we prove that this problem is NP-hard when the input values are in N or
the algebraic extension N[x1, . . . , xk].1

1.1 Problem Variants and Results
Expressions can be represented as trees with all operands at leaf nodes and operators at
internal nodes using Dijkstra’s shunting yard algorithm [4]. Similarly, an expression tree can
be converted into a parenthesized expression by concatenating the operands and operators
as they are encountered with an inorder traversal, adding an opening parenthesis when
descending the tree and a closing parenthesis when ascending.

+

79

×

77

11 7

÷

2

4 −

2

3 1

Figure 1 An example expression tree for 7× 11 + (4÷ (3− 1)) = 79. The numbers above the
internal nodes indicate their values.

1 To clarify the notation: all values are in the field extension Q(x1, . . . , xk), but the input values are
restricted to N[x1, . . . , xk], i.e., have nonnegative integer coefficients.

L. Alcock et al. 12:3

We also consider following two variants of AEC which impose additional constraints
(specified by some data we denote by D) on the expression trees:

I Problem 2 ((L, ops)-AEC-EL / Enforced Leaves).
Instance: A target value t ∈ L and a multiset of values A = {a1, . . . , an} ⊆ L with the leaf
order encoded by D : A→ [n].
Question: Can an expression tree be formed such that each internal node has an operation
from ops, and the leaves of the tree are the list A in order D, where the tree evaluates to t?

I Problem 3 ((L, ops)-AEC-EO / Enforced Operations).
Instance: A multiset of values A = {a1, a2, . . . , an} ⊆ L, a target t ∈ L, and an expression
tree D with internal nodes each containing an operation from ops and empty leaf nodes.
Question: Can the expression tree be completed by assigning each value in A to exactly
one leaf node such that the tree evaluates to t?

The first variant fixes the ordering of leaf nodes of the tree, and asks whether an expression
can be formed which reaches the target. The second variant constrains the shape of the tree
and internal node operations, and asks whether an ordering of the leaves can be found which
evaluates to the target. We represent all instances of these variants by triples (A, t,D) where
A = {a1, a2, . . . an} is a multiset of values, t is the target value, and D is additional data for
the instance: a leaf ordering for EL, and an expression tree for EO.

In this paper, we prove hardness results in all of these variants by reduction from Parti-
tion and related problems listed in Appendix A, and develop polynomial or pseudopolynomial
algorithms where appropriate. Table 1 summarizes our results. In particular, we prove
NP-hardness with L = N for the Standard and EO variants for all subsets of operations
{+,−,×,÷}. Note that all of these problems are in NP: simply evaluate the expression given
as a certificate.

Table 1 Our results for Arithmetic Expression Construction. Bold font indicates NP-completeness
results that are tight; for weakly NP-complete results, this means that we have a corresponding
pseudopolynomial-time algorithm. The proof is given in the section in parentheses, or if no number
is given, in the full paper.

Operations Standard Enforced Operations Enforced Leaves
{+} ∈ P ∈ P ∈ P
{−} weakly NP-complete weakly NP-complete weakly NP-complete
{×} ∈ P ∈ P ∈ P
{÷} strongly NP-complete strongly NP-complete strongly NP-complete
{+,−} weakly NP-complete weakly NP-complete weakly NP-complete
{+,×} weakly NP-complete (§3) weakly NP-completea (§5) weakly NP-complete
{+,÷} weakly NP-complete strongly NP-complete Open
{−,×} weakly NP-complete strongly NP-complete weakly NP-complete
{−,÷} weakly NP-complete strongly NP-complete Open
{×,÷} strongly NP-complete strongly NP-complete strongly NP-complete
{+,−,×} weakly NP-complete (§3) strongly NP-complete weakly NP-complete (§4)
{+,−,÷} weakly NP-complete strongly NP-complete Open
{+,×,÷} weakly NP-complete (§3) strongly NP-complete weakly NP-complete
{−,×,÷} weakly NP-complete strongly NP-complete Open
{+,−,×,÷} weakly NP-complete (§3) strongly NP-complete Open

a Strong in all variables except the target t

ISAAC 2020

12:4 Arithmetic Expression Construction

Our first step is to show that, for any k and k′, there is a polynomial-time reduction
from the k-variable variant to the k′-variable variant. Such a reduction is trivial for k ≤ k′
by leaving the instance unchanged. For the converse, we present the Rational Function
Framework in Section 2, which provides a polynomial-time construction of a positive integer B
on an instance I (i.e., set of values {ai}, t ∈ N[x1, . . . , xk]) such that replacing xk = B yields
a solvable instance if and only if I is solvable. That is, for all variants var ∈ {Std,EO,EL},
we obtain a simple reduction

(N[x1, . . . , xk], ops)-AEC-var→ (N[x1, . . . , xk−1], ops)-AEC-var

Because this reduction preserves algebraic properties, it yields interesting positive results in ad-
dition to hardness results. For example, this result demonstrates that (N[x1, . . . , xk], {+,−})-
AEC-Std has a pseudopolynomial-time algorithm via a chain of reductions to (N, {+,−})-
AEC-Std which is equivalent to the classic Partition problem.

1.2 Notation
Beyond the I = (A, t,D) instance notation introduced above, we often use the variable E
to denote an expression; the Standard variant is to decide whether ∃E : E(A) = t. We also
use “ev(·)” to denote the value of an expression at a node of an expression tree (i.e., the
evaluation of the subtree whose root is that node).

1.3 Outline of Paper
In Section 2, we describe the Rational Function Framework which demonstrates equivalence
between AEC variants over different numbers of free variables. In Section 3, we present the
structure theorem which will be used to prove hardness of the nontrivial cases of Standard
and we present a proof of the full case with it. In Section 4, and Section 5, we sketch two
selected interesting reductions for Enforced Leaves and Enforced Operations respectively.
The rest of our hardness proofs along with pseudopolynomial algorithms for some weakly
NP-hard problems can be found in the full paper. Appendix A lists the problems we reduce
from for our hardness proofs.

2 Rational Function Framework

In this section, we present the rational function framework. This framework proves the
polynomial-time equivalence of all Arithmetic Expression Construction variants with values
as ratios of polynomials with integer coefficients, that is, Q(x1, . . . , xk), for differing k. This
equivalence also allows us to restrict to N[x1, . . . , xk] and critically will make proving hardness
for variants over N easier by allowing us to reduce to N[x1, . . . , xk] versions.

I Theorem 1. For all ops ⊆ {+,−,×,÷}, for all variants var, for all integers k > 0, there
exists an efficient algorithm A mapping instances I to positive integers A(I) such that a
polynomial-time reduction

(Q(x1, . . . , xk), ops)-AEC-var→ (Q(x1, . . . , xk−1), ops)-AEC-var

is given by substituting xk = B in an instance I for any B ∈ N satisfying B ≥ A(I).

To formalize the idea of a “big enough” B, we introduce the concept of sufficiency of
integers for instances of AEC. Let B be a positive integer and let I = (A, t = ft/gt, D) be a
(Q(x1, . . . , xk), ops)-AEC-var instance. Loosely, we consider B to be (I, ops, var)-sufficient
if substituting xk = B in instance I creates a valid reduction on I, as in Theorem 1.

L. Alcock et al. 12:5

We will shorten the terminology and call this I-sufficient or sufficient for I when ops
and var are clear from context. Theorem 1 says there is an efficient algorithm that produces
sufficient integers. Note that this definition is not yet rigorous. To remedy this we introduce
the paired model of computation on rational functions.

In the paired model of computation, objects are given by pairs (f, g) of integer-coefficient
polynomials f, g ∈ Z[x1, . . . , xk]. Intuitively, the paired model simulates rational functions
by (f, g) ↔ f/g. We define operations (+,−,×,÷) and equivalence relation (∼) on pairs
(a, b) and (f, g) as follows:

(f, g) + (a, b) = (fb+ ga, gb)
(f, g)− (a, b) = (fb− ga, gb)
(f, g)× (a, b) = (fa, gb)
(f, g)÷ (a, b) = (fb, ga)
(f, g) ∼ (a, b)⇔ fb = ga

As mentioned, the intuition is that f is the numerator and g is the denominator of a
ratio of polynomials with integer coefficients. The utility of the model is that it keeps track
of rational functions as specific quotients of integer coefficient polynomials. This will remove
the ambiguity of representation of elements in Q(x1, . . . , xn). Such a model allows us to
make arguments about which polynomials can occur in the numerator and denominator of a
rational function, such as by defining the range of these polynomials.

We can define Arithmetic Expression Construction in the paired model for all variants
by changing target and values into pairs and using all the operations as defined above. An
instance in the paired model is solvable if there exists an expression E in values from A and
satisfying conditions imposed byD such that given (f, g) = E(A), we have (f, g) ∼ t = (ft, gt).
For example, in enforced leaves, the entries of leaves of E must be in the order specified
by D, and in enforced order, the expression E is already specified and one must reorder A.
The only difference is that we now compute in the paired model rather than with rational
functions.

Similarly, note that one can convert instances in the paired model to the nonpaired
model via mapping entries (fi, gi) 7→ fi/gi and for a nonpaired model, one can always write
r ∈ Q(x1, . . . , xk) as fi/gi where fi, gi have integer coefficients.2 A paired instance of AEC is
solvable if and only if it’s nonpaired variant is solvable. We now rigorously define sufficiency
in Definition 2 and characterize its use in Lemma 3.

I Definition 2. Let B be a positive integer, and I = (A, t = ft/gt, D) be an instance of
(Q(x1, . . . , xk), ops)-AEC-var. Represent I in the paired model. Suppose that, for every
evaluation (f, g) = E(A) of a valid AEC expression E (as restricted by D) in the paired
model, the norms of the coefficients of fgt and ftg are all less than B/2. Then B is
(I, ops, var)-sufficient.

I Lemma 3. Given an instance I = (A, t = ft/gt, D) of (Q(x1, . . . , xk), ops)-AEC-var and
B ∈ N which is I-sufficient as defined above. Let E(·) be some expression from a valid ops
expression tree according to D. Then, for every evaluation of E over the polynomials in A,
one has:

E ({(ai(x1, . . . , xk)}ai∈A) = t(x1, . . . , xk)
⇔ E ({ai(x1, . . . , xk−1, B)}ai∈A) = t(x1, . . . , xk−1, B).

2 Note that this representation is not unique!

ISAAC 2020

12:6 Arithmetic Expression Construction

The proof of this lemma can be found in the full paper. Essentially, this lemma shows
that constructing I-sufficient integers efficiently is sufficient to prove our main theorem. The
rest of this section is dedicated to the polynomial-time construction of I sufficient integers B
by an algorithm A.

Let

m(f) :=
(

deg(f) + k

deg(f)

)
where m(f) is the maximum number of terms a k-variable polynomial f of degree deg(f)
can have. Let maxcoeff(f) denote the max of all of the norms of coefficients of f . That is,

maxcoeff(f) = max
c
{|c| : c coefficient of f}.

Now we are ready to present an integer sufficient for an instance.

I Lemma 4. Let I = (A, t,D) be an instance of (Q(x1, . . . , xk), ops)-AEC-var. Then

B = 2m(t) maxcoeff(t)(2Mq)n

is sufficient for I, where n = |A|, q := maxfi/gi∈A(maxcoeff(fi),maxcoeff(gi)) is the largest
coefficient appearing in a paired polynomial within A, and M =

∑
ai∈Am(ai).

I Remark. The algorithm presented in the proof (found in the full paper) gives a large B
that will give blowup sizes which are unnecessary for most AEC instances. One key use of
sufficiency is to facilitate proofs with lower blowup. Often times we will have the following
situation: We will give a reduction from a partition-type problem P to (Q(xi), ops)-AEC-var
and construct (I, ops, var)-sufficient B such that the composition

P → (Q(x1, . . . , xk), ops)-AEC-var→ (N, ops)-AEC-var

is a valid reduction.

2.1 Possible Generalizations to the Rational Framework
In this section, we informally explore the possibility of extending the rational framework to
the problems more general than expression construction, such as circuits. The generalization
to circuits naturally becomes an arithmetic version of the Minimum Circuit Size Problem.

The original Minimum Circuit Size Problem (MCSP) [9] asks if given a truth table and
an integer k, can you construct a boolean circuit of size at most k that computes the truth
table; this problem has many connections throughout complexity theory. A new variant,
“Arithmetic MCSP” would ask if given n values in {a1, . . . , an} ⊆ L, within 0 < k < n

operations from {+,−,×,÷} can you construct a target t ∈ L?3 For L = Q(x1, . . . , xk), this
problem asks whether a given rational function is constructible by an arithmetic circuit of
size at most k starting from a set of rational functions. It would be very useful if the rational
framework could be adapted for Arithmetic MCSP; this would demonstrate an equivalence
between the problem of circuit construction of rational functions and of reaching a rational
number given input rational numbers.

3 Note that since we can reuse values here, picking k to be less than n is the same as picking k to be
bounded by a fixed polynomial p(n) by a padding argument. That is, you can reduce from this problem
where you specify k < p(n) to k < n by padding any given instance A with ≈ p(n) copies of a1. This is
similar to the proof that linear space simulation is PSPACE complete.

L. Alcock et al. 12:7

Unfortunately, the reduction methods provided above do not work naively for circuits:
Given a polynomial-sized “sufficient” B as presented, and a polynomial of the form cx, the
term (c2k

x2k) is formable by repeated squaring. That is, we can form superpolynomial
coefficents that will be bigger than B. This removes the concept of “sufficiency” which is a
key requirement for the rational framework as it is.

On the bright side, the rational framework should work for Arithmetic Minimum Formula
Constructions. Arithmetic formulae are expression trees with internal nodes operations
{+,−,×,÷} except that one may use the input values in A a flexible number of times. This
is analogous to Boolean formulae; indeed, Minimum Boolean Formula problems [3, 8] have
also received significant attention. We can define Arithmetic Minimum Formula Construction
as follows: Given multiset A ⊆ L, target t, 0 < k < n, can you give a formula of size at most
k with values in A which reaches a target t ∈ L?

The intuitive reason that the rational framework should hold in this case is because
formulae still have a tree structure and the number of leaves is polynomial. Thus, the same
proofs in the rational framework will carry over. However, we expect the complexity and
hardness proofs for this family of problems should be very different than those in this paper.
All the reductions in this paper are from Partition-type problems, which allow for at most a
single use of each input number. Hardness of this family of problems and generalizations of
the rational function framework are interesting areas for further study.

3 Arithmetic Expression Construction Standard Results

In this section, we provide NP-hardness proofs for operations {+,×} ⊆ S ⊆ {+,−,×,÷}
of the Standard variant of Arithmetic Expression Construction. In the full paper, we give
similar reductions that cover all other subsets of operations.

All of these results use the rational function framework described in Section 2.
First, we outline some proof techniques that are used in this section to both combine

proofs of results from differing sets of operations as well as simplify them. The first comes
from the observation that if an instance of (L, S)-AEC-Std is solvable, then for any operation
set S′ ⊃ S, the same instance will be solvable in (L, S′)-AEC-Std. This allows us to bundle
reductions to several AEC-Std cases simultaneously by giving a reduction (R) from some
partition problem P to (L, S)-AEC-Std and proving that if any constructed instance is
solvable in (L, S′)-AEC-Std, the partition instance is also solvable. That is, we have the
following implications:

P -instance x Solvable R(x) is S-Solvable

R(x) is S′-Solvable

I Theorem 5. Standard {+,×} ⊆ S ⊆ {+,−,×,÷} is weakly NP-hard by reduction from
SquareProductPartition-n/2.

We spend the remainder of this section proving this theorem.
We will reduce from SquareProductPartition-n/2 (defined in Appendix A) to

(Z[x, y, z], S)-AEC-Std. On an instance {a1, . . . , an} with all ai ≥ 2,4 of SquareProduct-
Partition-n/2 construct the following:

4 We can assume this property with loss of generality by replacing all ai with 2ai.

ISAAC 2020

12:8 Arithmetic Expression Construction

Let

By = y − xn/2
√∏

i

ai; Bz = z − xn/2
√∏

i

ai.

We then construct the instance of Arithmetic Expression Construction with input set
A = {By, Bz} ∪ {aix}i and target t = yz. Here the square root of the product of all ai is
the value we want each partition to achieve, the polynomial xn/2 will help us argue that we
must multiply all of our ai values, and By, Bz are gadgets which will force a partitioned tree
structure as given by Theorem 8. Methods from Section 2 allow us to construct a reduction
by replacing x, y, and z with sufficient integers B1, B2 and B3.

It is clear that if the SquareProductPartition-n/2 is solvable then this AEC instance
is solvable with operations {+,×} ⊆ S. On the partition with equalized products, partition
the aix terms into corresponding sets and take their products to get two polynomials of value
xn/2√∏

i ai. Then form (By + xn/2√∏
i ai)(Bz + xn/2√∏

i ai) = yz.
Next, we prove the converse via contradiction by proving the following theorem that will

be useful for the other AEC-Std cases. This theorem shows that any expression tree which
evaluates to target t ≈ yz on an instance of similar structure to the constructed instance
above must have a very particular partitioned structure described in Theorem 8. This will be
the key to showing the soundness of our reduction. We use ev(T) to refer to the evaluation
of the subtree rooted at node T .

Before stating Theorem 8, we first introduce the concept of Q(x)-equivalence and give a
couple of characterizations of it:

I Definition 6. Given a field K with a subfield F , for L1, L2 ∈ K − F , we say L1 and L2
are F -equivalent (written L1 ∼F L2) if by a sequence of operations between L1 and elements
of F we can form L2.

The following lemma gives an alternate characterization of ∼F :

I Lemma 7. ∼F is an equivalence relation and L2 ∼F L1 if and only if for some ci, di ∈ F
with c1d2 − c2d1 6= 0,

L2 = c1L1 + d1

c2L1 + d2

We will refer to Q(x) equivalence with respect to Q(x) as a subfield of Q(x, y, z).
We now state our structure theorem:

I Theorem 8. For any S ⊆ {+,−,×,÷}, let I be a solvable (Q(x, y, z), S)-AEC-Std
instance with entries of the form {By, Bz} ∪ {ri(x)}i where By ∼Q(x) y,Bz ∼Q(x) z, and
ri ∈ Q[x] and target t with t ∼Q(x) yz. Then any solution expression tree for I has the
form depicted in Figure 2: The operation at the least common ancestor of leaves By and
Bz, denoted N , is × or ÷, and ev(N) = (lyz)±1, l ∈ Q(x). For Ty, Tz the children of N
containing By, Bz respectively, ev(Ty) = (ay)±1, ev(Tz) = (a′z)±1, where a, a′ ∈ Q(x).

L. Alcock et al. 12:9

N

(lyz)±1

(ay)±1

xa1 xa2

By

(a′z)±1

Bz

xa3 xa4

xa5

xa6 xa7Ty Tz

Figure 2 Example expression tree for standard {+,−,×,÷}.

Proof. In our expression tree T , N is the least common ancestor between By and Bz. One
has that

ev(N) = eyz + f

gyz + h
, eh− gf 6= 0, e, f, g, h ∈ Q(x)

since ev(N) is combined with a sequence of operations with elements in Q(x) to form t. That
is, it is Q(x) equivalent to yz.

Let Ty be the child of N containing By as a leaf and Tz the child of N containing Bz. A
priori we know

ev(Ty) = ay + b

cy + d
, ev(Tz) = a′z + b′

c′z + d′
, ev(N) = eyz + f

gyz + h
,

ad− bc 6= 0, a′d′ − b′c′ 6= 0, eh− fg 6= 0, a, b, c, d, a′, b′, c′, d′, e, f, g, h ∈ Q(x)

by similar Q(x)-equivalence arguments. The rest of the proof is casework done via trying
out different operations at N . We will see that if the operation is ×,÷ then the evaluations
must be of the form described in the statement of the theorem and that if the operation is ±
then we reach a contradiction.

First we check the case that the operation at N is ×. For this argument we’ll reduce to a
set of equations in Q(x)[y, z] and make some divisibility arguments using the fact that this
is a unique factorization domain.

ay + b

cy + d
· a
′z + b′

c′z + d′
= eyz + f

gyz + h

⇒ (ay + b)(a′z + b′)(gyz + h) = (cy + d)(c′z + d′)(eyz + f)

If both e, f 6= 0, then eyz+f is irreducible and since eyz+f |(ay+b)(a′z+b′)(gyz+h) we find
that eyz + f |gyz + h and eyz+f

gyz+h = l ∈ Q(x). However, this would contradict ev(N) ∼Q(x) yz.
We conclude that exactly one of e, f is nonzero. A similar argument with gyz + h allows
us to conclude that at most one of g, h is nonzero. We cannot have g = 0 and e = 0, or we
would have ev(N) ∈ Q(x). This reduces us to the case that ev(N) = (lyz)±1. We now have
one of the two cases:

(ay + b)(a′z + b′) = lyz(cy + d)(c′z + d′) (1)
lyz(ay + b)(a′z + b′) = (cy + d)(c′z + d′) (2)

ISAAC 2020

12:10 Arithmetic Expression Construction

For the first case to hold one must have c = c′ = 0 for the degrees in y and z to match up.
Given c = c′ = 0, one must also have b = b′ = 0 so that the right hand side of the equation
is divisible by yz. A similar argument for the second case yields a = a′ = d = d′ = 0. For
multiplication, this case is covered. If the operation is division, one gets the relation:

ay + b

cy + d
÷ a′y + b′

c′y + d′
= ay + b

cy + d
· c
′y + d′

a′y + b′
= eyz + f

gyz + h

and the same argument follows through.
Next we show that the operation at N can not be +:

ay + b

cy + d
+ a′z + b′

c′z + d′
= eyz + f

gyz + h

((ac′ + a′c)yz + (ad′ + b′c)y + (bc′ + a′d)z + (bd′ + b′d))(gyz + h)
= (cy + d)(c′z + d′)(eyz + f) (3)

Starting with a similar divisibility argument, if g, h 6= 0, we find that gyz + h is irreducible
and that gyz + h|eyz + f, eyz+h

gyz+f ∈ Q(x). Thus either g = 0 or h = 0.
Suppose g = 0. Then we must have e 6= 0 to maintain ev(N) ∼Q(x) yz. With nonzero e,

one must have that c = c′ = 0 so that the RHS of equation (9) has degree no bigger than the
left hand side. The coefficient of yz on the LHS of the equation is (ac′ + a′c)h = 0 and the
coefficient of yz on the RHS is edd′ which must be nonzero and thus we get a contradiction.

Suppose h = 0. We must have g, f 6= 0 to maintain ev(N) ∼Q(x) yz. The LHS of the
equation is divisible by yz. Thus yz|(cy + d)(c′z + d′)(eyz + f) and this can only occur if
d = d′ = 0 and c, c′ 6= 0. Expanding the equations now and looking at the coefficient of yz
in the LHS and RHS we find: 0 6= cc′f = g(bd′ + b′d) = 0. This concludes the proof of our
helper theorem. J

Now we will return to our proof of the soundness of the reduction to AEC-Std. Suppose
that the constructed instance I is solvable and the product partition instance is not solvable.
Then for some S ∈ {leaves(Ty) ∩ {aix}, leaves(Tz) ∩ {aix}}, either
1. S contains < n/2 leaves aix.
2. S contains n/2 leaves aix with product αxn/2 with α <

√∏
i ai.

WLOG let this set be leaves(Ty) ∩ {aix}. In the next two claims, we prove that in neither of
these two cases can a subtree evaluate to an expression of the form (ay)±1 as Theorem 8
requires.

B Claim 9. If Ty contains < n/2 leaves {aix} and y′ = y − xn/2
√∏

ai, then ev(Ty) is not
of the form (ay)±1 for any a ∈ Q[x].

Proof. The value of any subtree can be written in the form p(x,y′)
q(x,y′) for polynomials p and

q. Let degx(p(x,y′)
q(x,y′)) = max(degx(p(x, y′)),degx(q(x, y′))). This degree is subadditive for

the four arithmetic operations (+,−,×,÷). Also, if degx(p ± q) ≤ 0, degx(p ∗ q) ≤ 0, or
degx(p/q) ≤ 0, then degx(p) = degx(q).

By induction, the degree in x (resp. to y′) at a node A is at most the number of leaves of
A’s subtree of the form aix. This is true for the leaves (degx(aix) = 1), and subadditivity
proves it for the inductive step.

Hence ev(Ty) has degree at most 1 in y′ and less than n/2 in x. If ev(Ty) = (ay)±1 =
(a(y′ + xn/2)±1) for nonzero a ∈ Q(x), then it has degree at least n/2 in x, a contradiction.

C

L. Alcock et al. 12:11

B Claim 10. If Ty contains n/2 leaves aix with
∏
i ai = α <

√∏
i ai and y′ = y−xn/2

√∏
ai,

then ev(Ty) is not of the form (ay)±1 for any a ∈ Q(x).

Proof. First, we rewrite our target ev(Ty) in terms of y′, yielding ev(Ty) = (a(y′ +
xn/2

√∏
ai))±1. We will first show that regardless of the value of a, the maximum coeffi-

cient of the rational function ev(Ty) is at least
√∏

ai. Note that since y′ is not in Q(x),
(y′ + xn/2

√∏
ai) is an irreducible polynomial in x, so the denominator of a will never

cancel out with anything. Thus, we only consider the numerator of a. Consider the leading
coefficient of the numerator of the product. This leading coefficient must be exactly the
product of the leading coefficient of the numerator of a and xn/2

√∏
ai. Since the leading

coefficient of the numerator of a is an integer, it must be at least 1, so the leading coefficient
of the numerator of a(y′ + xn/2

√∏
ai) must be at least xn/2

√∏
ai.

From our reduction we have that all the ai are at least 2, and the largest possible integer
that can be generated from the ai and arithmetic operations is their product α. Every
coefficient of ev(Ty) is some combinations of arithmetic operations of the ai since it is
comprised of the aix and y′ and arithmetic operations. Thus, it is not possible for ev(Ty) to
ever have a coefficient of at least xn/2

√∏
ai. Thus, from the above argument it cannot be

of the form (a(y′ + xn/2
√∏

ai))±1. C

Note that the proof of this claim yields a reduction from SquareProductPartition-n/2
to (Z[x, y, z], S)-AEC-Std for all {+,×} ⊆ S ⊆ {+,−,×,÷}. Using our rational function
framework, we get a reduction from (Z[x, y, z], S)-AEC-Std to (Z, S)-AEC-Std by replace-
ments5 based on instance I with

x = B1 = A(I), y = B2 = A(I(B1)), z = A(I(B1, B2)).

However, since the reduction is of the form

{y − αxn/2, z − αxn/2} ∪ {aix},

if we replace B2 with B′2 = max(B2, 1 + αB
n/2
1), and B3 with B′3 = max(A(I(B1, B

′
2)), 1 +

α(A((B1, B
′
2)))n/2) this will yield still sufficient B2, B3 such that the composition of these

maps is a reduction from ProductPartition-n/2 to (N, S)-AEC-Std.

4 Arithmetic Expression Construction Enforced Leaves {+,−,×}

Recall that an instance of the Enforced Leaves (EL) AEC variant has a fixed ordering
of leaves (operands), and the goal is to arrange the internal nodes of the expression tree
such that the target t is the result of the tree’s evaluation. In this section we present a
proof sketch for the weak NP-hardness of (N[x, y], {+,−,×})-AEC-EL. Using the technique
described in Section 2, this also proves NP-hardness of (N, {+,−,×})-AEC-EL. In the full
paper, we provide the full proof and present additional hardness proofs for operation sets
{−,×}, {+,×}, {+,×,÷}.

Our proof is a reduction from SetProductPartitionBound-K. This strongly NP-hard
problem asks if given a set (without repetition) of positive integers A = {a1, a2, . . . , an}
where all ai > K and all prime factors of all ai are also greater than K, we can partition A
into two subsets with equal products. The problem is also defined formally in Appendix A.

5 Note that this denotes replacing with Bi which are I-sufficient but since this is done via three reductions
the instance I changes. Therefore, when replacing with B2, you need B2 to be I(B1) sufficient (i.e., the
instance I with x = B1 replaced). Similar requirements hold for B3.

ISAAC 2020

12:12 Arithmetic Expression Construction

B Claim 11. (N[x, y], {+,−,×})-AEC-EL is weakly NP-hard.

Proof sketch. This statement is proved via reduction from SetProductPartitionBound-3.
Let the instance be A = {a1, . . . , an}, where all prime factors of all ai ∈ A (and all ai
themselves) are greater than 3. We find n unique primes pi with some additional properties
specified in the appendix. Let L = 2n

∏
i∈[n] ai. Then for each ai we can construct terms bi

and ci such that bi + ci = (Lai)piy and bi − ci = (L/ai)piy. We set our target polynomial as
t(x, y) = Lnxn−1yn

∏
i∈[n] pi, and we enforce the following order of leaves:

b1 c1 x b2 c2 x · · · x bn cn

If an instance of this product partition variant is solvable, then the constructed instance
evaluates to t(x, y) = Lnxn−1yn

∏
i∈[n] pi when we have (bi + ci) for ai in one partition

and (bi − ci) for ai in the other, and the × operator at every other node. The partition
corresponds to whether the ai was written as a difference or a sum.

We must also show that any expression achieving the target must take the form above. We
restrict the set of possible forms by (1) inducting to show that each subtree of a solution must
have degree in x equal to its number of leaves of value x, (2) counting primes factors of the
highest degree term to show that subtrees with no x values must be of form {±bi,±ci,±bi±ci},
(3) a divisibility argument to show that sums of elements of form {±bi,±ci,±bi ± ci} as
appearing in any evaluation of a subtree is nonzero, and (4) an argument on the degree of y
for terms with degree 0 in x to show that these sums can never be cancelled. C

In the full paper, we expand on details and rigorously prove that the final evaluation
must be of the described form.

5 Arithmetic Expression Construction Enforced Operations {+,×}

This section concerns the Enforced Operations (EO) variant of AEC. Here, we give a short
proof for the NP-hardness of (N, {+,×})-AEC-EO; see the full paper for straightforward
proofs for all the other operation sets. Note that for Enforced Operations, if we prove
hardness for enforced operations with set S, we have also proved it for all S′ ⊃ S, since in
Enforced Operations, the expression tree can be restricted to using operations in reductions.

B Claim 12. (N, {+,×})-AEC-EO is weakly NP-hard.

Proof. This proof proceeds by reduction from 3-Partition-3, which is 3-Partition with
the extra restriction that all the subsets have size 3. Given an instance of 3-Partition-3,
A = {a1, a2, · · · , an}, construct instance IA of (N, {+,×})-AEC-EO with the same set of

values A, target t =
(

S
n/3

)n/3
, where S =

∑
i ai, and expression-tree:

(2 + 2 + 2)× (2 + 2 + 2)× · · · × (2 + 2 + 2),

where there are n/3 pairs of parentheses and 3 positive integers between each pair of
parentheses.

Given a solution of the 3-Partition-3 instance, one can use the same partition to fill
in the 3-sums and solve our (N, {+,×})-AEC-EO instance. If the constructed instance is
solvable, we claim that each expression (2 + 2 + 2) must have equal value. Denote the
value of the ith (2 + 2 + 2) by si. Since

∑
i si = S, the arithmetic mean-geometric mean

inequality yields
∏n/3
i=1 si ≤

(
S
n/3

)n/3
, with equality occurring if and only if si = S

n/3 for all i.
This completes the proof. C

L. Alcock et al. 12:13

References
1 Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. In

Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, pages 36–53, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

2 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, USA, 2009.

3 David Buchfuhrer and Christopher Umans. The complexity of boolean formula minimization. In
Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, pages 24–35, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

4 E. W. Dijkstra. ALGOL-60 translation. Technical Report MR 34/61, Rekenafdeling, Stichting
Mathematisch Centrum, 1961. URL: https://ir.cwi.nl/pub/9251.

5 Peter Downey, Benton Leong, and Ravi Sethi. Computing sequences with addition chains.
SIAM Journal on Computing, 10(3):638–646, 1981.

6 Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman and
Company, New York, 2002.

7 Daniel M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27:129–146,
1998.

8 Edith Hemaspaandra and Henning Schnoor. Minimization for generalized boolean formulas.
arXiv:1104.2312, 2011.

9 Valentine Kabanets and Jin yi Cai. Circuit minimization problem. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing, pages 73–79, Portland, OR, 2000.

10 Ueli Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor,
Cryptography and Coding, pages 1–12, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

11 C. T. Ng, M. S. Barketau, T. C. E. Cheng, and Mikhail Y. Kovalyov. “Product Partition”
and related problems of scheduling and systems reliability: Computational complexity and
approximation. European Journal of Operational Research, 207(2):601–604, 2010. doi:
10.1016/j.ejor.2010.05.034.

12 Arnold Scholz. Aufgaben und Lösungen 253. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 47:41–42, 1937.

13 Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT ’97, pages 256–266, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

14 Joachim von zur Gathen. Algebraic complexity theory. In Annual Review of Computer Science,
volume 3, pages 317–347. Annual Reviews Inc., 1988.

15 Wikipedia. 24 game. https://en.wikipedia.org/wiki/24_Game.

A Related Problems

To show the NP-hardness of the variants of Arithmetic Expression Construction, we reduce
from the following problems:

I Problem 4 (Partition).
Instance: A multiset of positive integers A = a1, a2, . . . , an.
Question: Can A be partitioned into two subsets with equal sum?
Reference: [6], problem SP12.
Comment: Weakly NP-hard.

I Problem 5 (Partition-n/2).
Instance: A multiset of positive integers A = a1, a2, . . . , an.
Question: Can A be partitioned into two subsets with equal size n

2 and equal sum?
Reference: [6], problem SP12.
Comment: Weakly NP-hard.

ISAAC 2020

https://ir.cwi.nl/pub/9251
https://doi.org/10.1016/j.ejor.2010.05.034
https://doi.org/10.1016/j.ejor.2010.05.034
https://en.wikipedia.org/wiki/24_Game

12:14 Arithmetic Expression Construction

I Problem 6 (ProductPartition).
Instance: A multiset of positive integers A = a1, a2, . . . , an.
Question: Can A be partitioned into two subsets with equal product?
Reference: [11].
Comment: Strongly NP-hard.

I Problem 7 (ProductPartition-n/2).
Instance: A multiset of positive integers A = a1, a2, . . . , an.
Question: Can A be partitioned into two subsets with equal size n

2 and equal product?
Comment: Strongly NP-hard. See Theorem 13.

I Problem 8 (SquareProductPartition).
Instance: A multiset of square numbers A = a1, a2, . . . , an.
Question: Can A be partitioned into two subsets with equal product?
Comment: Strongly NP-hard. See Theorem 14.

I Problem 9 (SquareProductPartition-n/2).
Instance: A multiset of square numbers A = a1, a2, . . . , an.
Question: Can A be partitioned into two subsets with equal size n

2 and equal product?
Comment: Strongly NP-hard. See Theorem 14.

I Problem 10 (SetProductPartitionBound-K).
Instance: A set (without repetition) of positive integers A = a1, a2, . . . , an where ai > K

and all prime factors of ai are also greater than K. K is fixed and the prime factors are not
specified in the instance.
Question: Can A be partitioned into two subsets with equal product?
Reference: [11].
Comment: Strongly NP-hard by a modification of the proof for ProductPartition in
[11]. The reduction constructs a set of positive integers A where all elements are unique,
which we modify by choosing primes factors > K when constructing A.

I Problem 11 (3-Partition-3).
Instance: A multiset of positive integers A = a1, a2, . . . , an, with n a multiple of 3.
Question: Can A be partitioned into n/3 subsets with equal sum, where all subsets have
size 3?
Reference: [6], problem SP15.
Comment: Strongly NP-hard, even when all subsets are required to have size 3 (3-
Partition3).

I Theorem 13. ProductPartition-n/2 is strongly NP-complete.

Proof. We can reduce from ProductPartition to ProductPartition-n/2. Given in-
stance of ProductPartition {a1, · · · , an}i with n elements, where n is even, we construct
an corresponding instance of ProductPartition-n/2 as {a1, · · · , an} ∪ {1} ∗ n, where
{1} ∗ n denotes n instances of the integer 1.

Clearly if we have a valid solution to ProductPartition-n/2, we have a valid solution
to the instance of ProductPartition. Conversely, given a valid solution to Product-
Partition, two subsets S1, S2 ⊆ {ai}i with equal product, the difference between the sizes of
S1 and S2 is at most n−2. One can then distribute the 1s as needed to even the out the num-
ber of elements of S1 and S2. We can then construct two sets: S1 ∪{1} ∗ |S2|, S2 ∪{1} ∗ |S1|
which form a solution to ProductPartition-n/2. Strong NP-hardness follows from strong
NP-hardness of ProductPartition-n/2. J

L. Alcock et al. 12:15

I Theorem 14. SquareProductPartition and SquareProductPartition-n/2 is
strongly NP-complete.

Proof. One can reduce from ProductPartition to SquareProductPartition by
simply taking an instance I = {ai}i∈α and producing the instance I ′ = {a2

i }i∈α. Given a
partition of α = α1tα2 such that

∏
i∈α1

ai =
∏
i∈α2

ai, the same partition of α will produce a
valid partition of I ′ as the squares will remain equal. The converse also holds by taking noting
that

∏
i∈α′ ai =

√∏
i∈α′ a2

i . The same construction above, with the added requirement that
|α1| = |α2|, will reduce from ProductPartition-n/2 to SquareProductPartition-n/2.
Strong NP-hardness of both holds by noting that squaring integers scales their bitsize by a
factor of 2. J

ISAAC 2020

	1 Introduction
	1.1 Problem Variants and Results
	1.2 Notation
	1.3 Outline of Paper

	2 Rational Function Framework
	2.1 Possible Generalizations to the Rational Framework

	3 Arithmetic Expression Construction Standard Results
	4 Arithmetic Expression Construction Enforced Leaves {+, –, ×}
	5 Arithmetic Expression Construction Enforced Operations {+, ×}
	A Related Problems

