924 research outputs found

    Volume Transport by a 3D Quasigeostrophic Heton

    Get PDF
    &nbsp; Oceanic flows self-organize into coherent vortices, which strongly influence their transport and mixing properties. Counter-rotating vortex pairs can travel long distances and carry trapped fluid as they move. These structures are often modeled as hetons, viz. counter-rotating quasigeostrophic point vortex pairs with equal circulations. Here, we investigate the structure of the transport induced by a single three-dimensional heton. The transport is determined by the Hamiltonian structure of the velocity field induced by the heton&rsquo;s component vortices. The dynamics display a sequence of bifurcations as one moves through the heton-induced velocity field in height. These bifurcations create and destroy unstable fixed points whose associated invariant manifolds bound the trapped volume. Heton configurations fall into three categories. Vertically aligned hetons, which are parallel to the vertical axis and have zero horizontal separation, do not move and do not transport fluid. Horizontally aligned hetons, which lie on the horizontal plane and have zero vertical separation, have a single parameter, the horizontal vortex half-separation Y, and simple scaling shows the dimensional trapped volume scales as Y 3 . Tilted hetons are described by two parameters, Y and the vertical vortex half-separation Z, rendering the scaling analysis more complex. A scaling theory is developed for the trapped volume of tilted hetons, showing that it scales as Z 4 / Y for large Z. Numerical calculations illustrate the structure of the trapped volume and verify the scaling theory.</div

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    Fluctuation Properties of Steady-State Langevin Systems

    Full text link
    Motivated by stochastic models of climate phenomena, the steady-state of a linear stochastic model with additive Gaussian white noise is studied. Fluctuation theorems for nonequilibrium steady-states provide a constraint on the character of these fluctuations. The properties of the fluctuations which are unconstrained by the fluctuation theorem are investigated and related to the model parameters. The irreversibility of trajectory segments, which satisfies a fluctuation theorem, is used as a measure of nonequilibrium fluctuations. The moments of the irreversibility probability density function (pdf) are found and the pdf is seen to be non-Gaussian. The average irreversibility goes to zero for short and long trajectory segments and has a maximum for some finite segment length, which defines a characteristic timescale of the fluctuations. The initial average irreversibility growth rate is equal to the average entropy production and is related to noise-amplification. For systems with a separation of deterministic timescales, modes with timescales much shorter than the trajectory timespan and whose noise amplitudes are not asymptotically large, do not, to first order, contribute to the irreversibility statistics, providing a potential basis for dimensional reduction.Comment: 8 pages, to be published in Physical Review

    Is Rust Used Safely by Software Developers?

    Full text link
    Rust, an emerging programming language with explosive growth, provides a robust type system that enables programmers to write memory-safe and data-race free code. To allow access to a machine's hardware and to support low-level performance optimizations, a second language, Unsafe Rust, is embedded in Rust. It contains support for operations that are difficult to statically check, such as C-style pointers for access to arbitrary memory locations and mutable global variables. When a program uses these features, the compiler is unable to statically guarantee the safety properties Rust promotes. In this work, we perform a large-scale empirical study to explore how software developers are using Unsafe Rust in real-world Rust libraries and applications. Our results indicate that software engineers use the keyword unsafe in less than 30% of Rust libraries, but more than half cannot be entirely statically checked by the Rust compiler because of Unsafe Rust hidden somewhere in a library's call chain. We conclude that although the use of the keyword unsafe is limited, the propagation of unsafeness offers a challenge to the claim of Rust as a memory-safe language. Furthermore, we recommend changes to the Rust compiler and to the central Rust repository's interface to help Rust software developers be aware of when their Rust code is unsafe
    • …
    corecore