23 research outputs found

    Isolation of Circulating Tumour Cells in Patients With Glioblastoma Using Spiral Microfluidic Technology – A Pilot Study

    Full text link
    Glioblastoma (GBM) is the most common and aggressive type of tumour arising from the central nervous system. GBM remains an incurable disease despite advancement in therapies, with overall survival of approximately 15 months. Recent literature has highlighted that GBM releases tumoural content which crosses the blood-brain barrier (BBB) and is detected in patients' blood, such as circulating tumour cells (CTCs). CTCs carry tumour information and have shown promise as prognostic and predictive biomarkers in different cancer types. Currently, there is limited data for the clinical utility of CTCs in GBM. Here, we report the use of spiral microfluidic technology to isolate CTCs from whole blood of newly diagnosed GBM patients before and after surgery, followed by characterization for GFAP, cell-surface vimentin protein expression and EGFR amplification. CTCs were found in 13 out of 20 patients (9/20 before surgery and 11/19 after surgery). Patients with CTC counts equal to 0 after surgery had a significantly longer recurrence-free survival (p=0.0370). This is the first investigation using the spiral microfluidics technology for the enrichment of CTCs from GBM patients and these results support the use of this technology to better understand the clinical value of CTCs in the management of GBM in future studies

    eLearning resources to supplement postgraduate neurosurgery training.

    Get PDF
    BACKGROUND: In an increasingly complex and competitive professional environment, improving methods to educate neurosurgical residents is key to ensure high-quality patient care. Electronic (e)Learning resources promise interactive knowledge acquisition. We set out to give a comprehensive overview on available eLearning resources that aim to improve postgraduate neurosurgical training and review the available literature. MATERIAL AND METHODS: A MEDLINE query was performed, using the search term "electronic AND learning AND neurosurgery". Only peer-reviewed English-language articles on the use of any means of eLearning to improve theoretical knowledge in postgraduate neurosurgical training were included. Reference lists were crosschecked for further relevant articles. Captured parameters were the year, country of origin, method of eLearning reported, and type of article, as well as its conclusion. eLearning resources were additionally searched for using Google. RESULTS: Of n = 301 identified articles by the MEDLINE search, n = 43 articles were analysed in detail. Applying defined criteria, n = 28 articles were excluded and n = 15 included. Most articles were generated within this decade, with groups from the USA, the UK and India having a leadership role. The majority of articles reviewed existing eLearning resources, others reported on the concept, development and use of generated eLearning resources. There was no article that scientifically assessed the effectiveness of eLearning resources (against traditional learning methods) in terms of efficacy or costs. Only one article reported on satisfaction rates with an eLearning tool. All authors of articles dealing with eLearning and the use of new media in neurosurgery uniformly agreed on its great potential and increasing future use, but most also highlighted some weaknesses and possible dangers. CONCLUSION: This review found only a few articles dealing with the modern aspects of eLearning as an adjunct to postgraduate neurosurgery training. Comprehensive eLearning platforms offering didactic modules with clear learning objectives are rare. Two decades after the rise of eLearning in neurosurgery, some promising solutions are readily available, but the potential of eLearning has not yet been sufficiently exploited
    corecore