290 research outputs found
Parenchymal involvement on CT pulmonary angiography in SARS-CoV-2 Alpha variant infection and correlation of COVID-19 CT severity score with clinical disease severity and short-term prognosis in a UK cohort
AIM: To determine if there is a difference in radiological, biochemical, or clinical severity between patients infected with Alpha-variant SARS-CoV-2 compared with those infected with pre-existing strains, and to determine if the computed tomography (CT) severity score (CTSS) for COVID-19 pneumonitis correlates with clinical severity and can prognosticate outcomes. MATERIALS AND METHODS: Blinded CTSS scoring was applied to 137 hospital patients who had undergone both CT pulmonary angiography (CTPA) and whole-genome sequencing of SARS-CoV-2 within 14 days of CTPA between 1/12/20β5/1/21. RESULTS: There was no evidence of a difference in imaging severity on CTPA, viral load, clinical parameters of severity, or outcomes between Alpha and preceding variants. CTSS on CTPA strongly correlates with clinical and biochemical severity at the time of CTPA, and with patient outcomes. Classifying CTSS into a binary value of βhighβ and βlowβ, with a cut-off score of 14, patients with a high score have a significantly increased risk of deterioration, as defined by subsequent admission to critical care or death (multivariate hazard ratio [HR] 2.76, p<0.001), and hospital length of stay (17.4 versus 7.9 days, p<0.0001). CONCLUSION: There was no evidence of a difference in radiological severity of Alpha variant infection compared with pre-existing strains. High CTSS applied to CTPA is associated with increased risk of COVID-19 severity and poorer clinical outcomes and may be of use particularly in settings where CT is not performed for diagnosis of COVID-19 but rather is used following clinical deterioration
Insights from Amphioxus into the Evolution of Vertebrate Cartilage
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli
Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, and yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 Escherichia coli bloodstream infection isolates from Oxfordshire, United Kingdom, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). A total of 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity, 23% [78/339]) but improved when genetic features associated with penicillinase hyperproduction (e.g., promoter mutations and copy number estimates) were considered (sensitivity, 82% [277/339]; P < 0.0001). Most discrepancies occurred in isolates with MICs within Β±1 doubling dilution of the breakpoint. We investigated two potential causes: the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (Β±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions
A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus
The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F2 individuals derived from two independent cave populations: PachΓ³n and the linked Yerbaniz and JaponΓ©s caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in PachΓ³n cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/JaponΓ©s caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species
Color afterimages in autistic adults
It has been suggested that attenuated adaptation to visual stimuli in autism is the result of atypical perceptual priors (e.g., Pellicano and Burr in Trends Cogn Sci 16(10):504β510, 2012. doi:10.β1016/βj.βtics.β2012.β08.β009). This study investigated adaptation to color in autistic adults, measuring both strength of afterimage and the influence of top-down knowledge. We found no difference in color afterimage strength between autistic and typical adults. Effects of top-down knowledge on afterimage intensity shown by Lupyan (Acta Psychol 161:117β130, 2015. doi:10.β1016/βj.βactpsy.β2015.β08.β006) were not replicated for either group. This study finds intact color adaptation in autistic adults. This is in contrast to findings of attenuated adaptation to faces and numerosity in autistic children. Future research should investigate the possibility of developmental differences in adaptation and further examine top-down effects on adaptation
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Bone Marrow Cells in Murine Colitis: Multi-Signal Analysis Confirms Pericryptal Myofibroblast Engraftment without Epithelial Involvement
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credite
A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage
The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate βnew headβ. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates
Vascular endothelial growth factor: an angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease?
<p>Abstract</p> <p>Background</p> <p>Patients with bronchitis type of chronic obstructive pulmonary disease (COPD) have raised vascular endothelial growth factor (VEGF) levels in induced sputum. This has been associated with the pathogenesis of COPD through apoptotic and oxidative stress mechanisms. Since, chronic airway inflammation is an important pathological feature of COPD mainly initiated by cigarette smoking, aim of this study was to assess smoking as a potential cause of raised airway VEGF levels in bronchitis type COPD and to test the association between VEGF levels in induced sputum and airway inflammation in these patients.</p> <p>Methods</p> <p>14 current smokers with bronchitis type COPD, 17 asymptomatic current smokers with normal spirometry and 16 non-smokers were included in the study. VEGF, IL-8, and TNF-Ξ± levels in induced sputum were measured and the correlations between these markers, as well as between VEGF levels and pulmonary function were assessed.</p> <p>Results</p> <p>The median concentrations of VEGF, IL-8, and TNF-Ξ± were significantly higher in induced sputum of COPD patients (1,070 pg/ml, 5.6 ng/ml and 50 pg/ml, respectively) compared to nonsmokers (260 pg/ml, 0.73 ng/ml, and 15.4 pg/ml, respectively, p < 0.05) and asymptomatic smokers (421 pg/ml, 1.27 ng/ml, p < 0.05, and 18.6 pg/ml, p > 0.05, respectively). Significant correlations were found between VEGF levels and pack years (r = 0.56, p = 0.046), IL-8 (r = 0.64, p = 0.026) and TNF-Ξ± (r = 0.62, p = 0.031) levels both in asymptomatic and COPD smokers (r = 0.66, p = 0.027, r = 0.67, p = 0.023, and r = 0.82, p = 0.002, respectively). No correlation was found between VEGF levels in sputum and pulmonary function parameters.</p> <p>Conclusion</p> <p>VEGF levels are raised in the airways of both asymptomatic and COPD smokers. The close correlation observed between VEGF levels in the airways and markers of airway inflammation in healthy smokers and in smokers with bronchitis type of COPD is suggestive of VEGF as a marker reflecting the inflammatory process that occurs in smoking subjects without alveolar destruction.</p
SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus [version 2; peer review: 2 approved]
Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected β₯28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. There was a relationship between RT-PCR negativity and the presence of total SARS-CoV-2 antibody (p=0.02). Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19
- β¦