2,777 research outputs found

    Peer-review in a world with rational scientists: Toward selection of the average

    Full text link
    One of the virtues of peer review is that it provides a self-regulating selection mechanism for scientific work, papers and projects. Peer review as a selection mechanism is hard to evaluate in terms of its efficiency. Serious efforts to understand its strengths and weaknesses have not yet lead to clear answers. In theory peer review works if the involved parties (editors and referees) conform to a set of requirements, such as love for high quality science, objectiveness, and absence of biases, nepotism, friend and clique networks, selfishness, etc. If these requirements are violated, what is the effect on the selection of high quality work? We study this question with a simple agent based model. In particular we are interested in the effects of rational referees, who might not have any incentive to see high quality work other than their own published or promoted. We find that a small fraction of incorrect (selfish or rational) referees can drastically reduce the quality of the published (accepted) scientific standard. We quantify the fraction for which peer review will no longer select better than pure chance. Decline of quality of accepted scientific work is shown as a function of the fraction of rational and unqualified referees. We show how a simple quality-increasing policy of e.g. a journal can lead to a loss in overall scientific quality, and how mutual support-networks of authors and referees deteriorate the system.Comment: 5 pages 4 figure

    X-ray photoemission spectroscopy determination of the InN/yttria stabilized cubic-zirconia valence band offset

    Get PDF
    The valence band offset of wurtzite InN(0001)/yttria stabilized cubic-zirconia (YSZ)(111) heterojunctions is determined by x-ray photoemission spectroscopy to be 1.19±0.17 eV giving a conduction band offset of 3.06±0.20 eV. Consequently, a type-I heterojunction forms between InN and YSZ in the straddling arrangement. The low lattice mismatch and high band offsets suggest potential for use of YSZ as a gate dielectric in high-frequency InN-based electronic devices

    Bandgap and effective mass of epitaxial cadmium oxide

    Get PDF
    The bandgap and band-edge effective mass of single crystal cadmium oxide, epitaxially grown by metal-organic vapor-phase epitaxy, are determined from infrared reflectivity, ultraviolet/visible absorption, and Hall effect measurements. Analysis and simulation of the optical data, including effects of band nonparabolicity, Moss-Burstein band filling and bandgap renormalization, reveal room temperature bandgap and band-edge effective mass values of 2.16±0.02 eV and 0.21±0.01m0 respectively

    Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy

    Get PDF
    The valence band offset of wurtzite-InN/AlN (0001) heterojunctions is determined by x-ray photoelectron spectroscopy to be 1.52±0.17 eV. Together with the resulting conduction band offset of 4.0±0.2 eV, a type-I heterojunction forms between InN and AlN in the straddling arrangement

    Transition from electron accumulation to depletion at InGaN surfaces

    Get PDF
    The composition dependence of the Fermi-level pinning at the oxidized (0001) surfaces of n-type InxGa1−xN films (0<=x<=1) is investigated using x-ray photoemission spectroscopy. The surface Fermi-level position varies from high above the conduction band minimum (CBM) at InN surfaces to significantly below the CBM at GaN surfaces, with the transition from electron accumulation to depletion occurring at approximately x=0.3. The results are consistent with the composition dependence of the band edges with respect to the charge neutrality level

    Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys

    Get PDF
    Photoluminescence (PL) has been observed from dilute InNxAs1–x epilayers grown by molecular-beam epitaxy. The PL spectra unambiguously show band gap reduction with increasing N content. The variation of the PL spectra with temperature is indicative of carrier detrapping from localized to extended states as the temperature is increased. The redshift of the free exciton PL peak with increasing N content and temperature is reproduced by the band anticrossing model, implemented via a (5×5) k·p Hamiltonian
    corecore