2,068 research outputs found

    Wisconsin Great Lakes Restoration Projects: Producing Results for People, Communities

    Get PDF
    This report provides updates on 12 Great Lakes restoration projects occurring in Wisconsin

    Visualization of Big Spatial Data using Coresets for Kernel Density Estimates

    Full text link
    The size of large, geo-located datasets has reached scales where visualization of all data points is inefficient. Random sampling is a method to reduce the size of a dataset, yet it can introduce unwanted errors. We describe a method for subsampling of spatial data suitable for creating kernel density estimates from very large data and demonstrate that it results in less error than random sampling. We also introduce a method to ensure that thresholding of low values based on sampled data does not omit any regions above the desired threshold when working with sampled data. We demonstrate the effectiveness of our approach using both, artificial and real-world large geospatial datasets

    Testing coupling relationships in object-oriented programs

    Get PDF
    As we move toward developing object‐oriented (OO) programs, the complexity traditionally found in functions and procedures is moving to the connections among components. Different faults occur when components are integrated to form higher‐level structures that aggregate the behavior and state. Consequently, we need to place more effort on testing the connections among components. Although OO technologies provide abstraction mechanisms for building components that can then be integrated to form applications, it also adds new compositional relations that can contain faults. This paper describes techniques for analyzing and testing the polymorphic relationships that occur in OO software. The techniques adapt traditional data flow coverage criteria to consider definitions and uses among state variables of classes, particularly in the presence of inheritance, dynamic binding, and polymorphic overriding of state variables and methods. The application of these techniques can result in an increased ability to find faults and to create an overall higher quality software

    The Challenges of Capacity Building in the Aligning Forces for Quality Alliances

    Get PDF
    Summarizes the challenges and trade-offs in infrastructure and governance as well as stakeholder relations and participation, such as inclusive versus efficient decision making, in an alliance to coordinate regional healthcare improvement activities

    Quantifying Inter-Segmental Coordination during the Instep Soccer Kicks

    Get PDF
    International Journal of Exercise Science 9(5): 646-656, 2016. In order to generate a high ball speed in soccer, the inter-segmental coordination of the kicking leg is critical. The purpose of this study was to quantify the coordination between the thigh and shank movement in the sagittal plane during instep kicks. Eleven female soccer players were video recorded using a high-speed (80 Hz) video camera during penalty kicks. Hip, knee and ankle joint centers of the right leg were digitized, and the movement was analyzed using Dartfish TeamPro (6.0). The thigh and shank segment angles were generated, and the coordination was quantified using the cross-correlation and the vector coding method. Four coordination patterns were defined based on coupling angles: in-phase, anti-phase, thigh-phase and shank-phase. The time spent in each coordination pattern was analyzed. The cross-correlation coefficient was positive for all the participants, indicating that the two segments rotated with similar patterns. Based on the vector coding method, we observed dominant coordination patterns of shank-phase and in-phase during the backswing and forward swing phase, respectively. We hope the outcomes of our study could provide a better understanding of soccer kicking coordination and benefit training young soccer players. Future studies may use the methodology and outcomes in the present study to investigate the coordination of different levels of players to better understand the process of skill acquisition

    Massive Science with VO and Grids

    Full text link
    There is a growing need for massive computational resources for the analysis of new astronomical datasets. To tackle this problem, we present here our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computational grid (e.g. TeraGrid, COSMOS etc.). We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We discuss our planned usages of the VOTechBroker in computing a huge number of n-point correlation functions from the SDSS data and massive model-fitting of millions of CMBfast models to WMAP data. We also discuss other applications including the determination of the XMM Cluster Survey selection function and the construction of new WMAP maps.Comment: Invited talk at ADASSXV conference published as ASP Conference Series, Vol. XXX, 2005 C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds. 9 page
    corecore