7 research outputs found

    Design process of the nanofluid injection mechanism in nuclear power plants

    Get PDF
    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner

    Incorporating Demand Dynamics in Multi-Period Capacitated Fast-Charging Location Planning for Electric Vehicles

    No full text
    We develop a multi-period capacitated flow refueling location problem for electric vehicles (EVs) as the EV market responds to the charging infrastructure. The optimization model will help us determine the optimal location of level 3 chargers as well as the number of charging modules at each station over multiple time periods. Our model can also be applied to fast-filling gaseous alternative fuel vehicles under similar assumptions. We define a number of demand dynamics, including flow demand growth as a function of charging opportunities on path as well as natural demand growth independent of charging infrastructure. We also present an alternative objective function of maximizing electric vehicle demand in addition to maximizing flow coverage. A case study based on a road network around Washington, D.C., New York City, and Boston is presented to provide numerical experiments related to demand dynamics, showing the potential problems in multi-period planning

    Inferring Origin-Destination Pairs and Utility-Based Travel Preferences of Shared Mobility System Users in a Multi-Modal Environment

    No full text
    This paper presents a methodological framework to identify population-wide traveler type distribution and simultaneously infer individual travelers’ Origin-Destination (OD) pairs, based on the individual records of a shared mobility (bike) system use in a multimodal travel environment. Given the information about the travelers’ outbound and inbound bike stations under varied price settings, the developed Selective Set Expectation Maximization (SSEM) algorithm infers an underlying distribution of travelers over the given traveler “types,” or “classes,” treating each traveler’s OD pair as a latent variable; the inferred most likely traveler type for each traveler then informs their most likely OD pair. The experimental results based on simulated data demonstrate high SSEM learning accuracy both on the aggregate and dissagregate levels
    corecore