5 research outputs found

    Evaluation and Inter-Comparison of Oxygen-Based OC-EC Separation Methods for Radiocarbon Analysis of Ambient Aerosol Particle Samples

    Get PDF
    Radiocarbon analysis is a widely-used tool for source apportionment of aerosol particles. One of the big challenges of this method, addressed in this work, is to isolate elemental carbon (EC) for 14C analysis. In the first part of the study, we validate a two-step method (2stepCIO) to separate total carbon (TC) into organic carbon (OC) and EC against the EUSAAR_2 thermal-optical method regarding the recovered carbon concentrations. The 2stepCIO method is based on the combustion of OC in pure oxygen at two different temperature steps to isolate EC. It is normally used with a custom-built aerosol combustion system (ACS), but in this project, it was also implemented as a thermal protocol on a Sunset OC-EC analyzer. Results for the recovered EC mass concentration showed poor agreement between the 2stepCIO method on the ACS system and on the Sunset analyzer. This indicates that the EC recovery is sensitive not only to the temperature steps, but also to instrument-specific parameters, such as heating rates. We also found that the EUSAAR_2 protocol itself can underestimate the EC concentration on untreated samples compared to water-extracted samples. This is especially so for highly loaded filters, which are typical for 14C analysis. For untreated samples, the EC concentration on long-term filter samples (two to five days sampling time) was 20–45% lower than the sum of EC found on the corresponding 24-h filter samples. For water-extracted filter samples, there was no significant difference between long-term and the sum of daily filter samples. In the second part of this study, the 14C was measured on EC isolated by the 2stepCIO method and compared to methods from two other laboratories. The different methods agree well within their uncertainty estimates

    Technical note : Aerosol light absorption measurements with a carbon analyser – Calibration and precision estimates

    No full text
    Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable

    Technical note : Aerosol light absorption measurements with a carbon analyser – Calibration and precision estimates

    No full text
    Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable

    Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter

    No full text
    This study was designed to determine the toxicity (oxidative stress, cytotoxicity, genotoxicity) in extracts of combustion aerosols. A typical Euro Ill heavy truck engine was tested over the European Transient Cycle with three different fuels: conventional diesel EN590, biodiesel EN14214 as 8100 and blends with conventional diesel (B5, 810, and 1320) and pure plant oil DIN51605 (PPO). In addition application of a (wall flow) diesel particulate filter (DPF) with conventional diesel EN590 was tested. The use of B100 or PPO as a fuel or the DPF reduced particulate matter (PM) mass and numbers over 80%. Similarly, significant reduction in the emission of chemical constituents (EC 90%, (oxy)-PAH 70%) were achieved. No significant changes in nitro-PAH were observed. The use of B100 or PPO led to a NOx increase of about 30%, and no increase for DPF application. The effects of B100, PPO and the DPF on the biological test results vary strongly from positive to negative depending on the biological end point. The oxidative potential, measured via the DDT assay, of the B100 and PPO or DPF emissions is reduced by 95%. The cytotoxicity is increased for B100 by 200%. The measured mutagenicity, using the Ames assay test with TA98 and YG1024 strains of Salmonella typhimurium indicate a dose response for the nitroarene sensitive YG1024 strain for B100 and PPO (fold induction: 1.6). In summary B100 and PPO have good potential for the use as a second generation biofuel resulting in lower PM mass, similar to application of a DPF, but caution should be made due to potential increased toxicity. Besides regulation via mass, the biological reactivity of exhaust emissions of new (bio)fuels and application of new technologies, needs attention. The different responses of different biological tests as well as differences in results between test laboratories underline the need for harmonization of test methods and international cooperation. (C) 2011 Elsevier Ltd. All rights reserved

    Herbs for dry diseases and indigestion

    No full text
    To date there is no consensus about the most appropriate analytical method for measuring carbon nanotubes (CNTs), hampering the assessment and limiting the comparison of data. The goal of this study is to develop an approach for the assessment of the level and nature of inhalable multi-wall CNTs (MWCNTs) in an actual workplace setting by optimizing and evaluating existing analytical methods. In a company commercially producing MWCNTs, personal breathing zone samples were collected for the inhalable size fraction with IOM samplers; which were analyzed with carbon analysis, inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Analytical methods were optimized for carbon analysis and SEM/EDX. More specifically, methods were applied and evaluated for background correction using carbon analyses and SEM/EDX, CNT structure count with SEM/EDX and subsequent mass conversion based on both carbon analyses and SEM/EDX. A moderate-to-high concordance correlation coefficient (RC) between carbon analyses and SEM/EDX was observed [RC = 0.81, 95% confidence interval (CI): 0.59-0.92] with an absolute mean difference of 59 µg m-3. A low RC between carbon analyses and ICP-MS (RC = 0.41, 95% CI: 0.07-0.67) with an absolute mean difference of 570 µg m-3 was observed. The large absolute difference between EC and metals is due to the presence of non-embedded inhalable catalyst particles, as a result of which MWCNT concentrations were overestimated. Combining carbon analysis and SEM/EDX is the most suitable for quantitative exposure assessment of MWCNTs in an actual workplace situation
    corecore