71 research outputs found

    Strain-driven elastic and orbital-ordering effects on thickness-dependent properties of manganite thin films

    Get PDF
    We report on the structural and magnetic characterization of (110) and (001) La2/3Ca1/3MnO3 (LCMO) epitaxial thin films simultaneously grown on (110) and (001)SrTiO3 substrates, with thicknesses t varying between 8 nm and 150 nm. It is found that while the in-plane interplanar distances of the (001) films are strongly clamped to those of the substrate and the films remain strained up to well above t=100 nm, the (110) films relax much earlier. Accurate determination of the in-plane and out-of-plane interplanar distances has allowed concluding that in all cases the unit cell volume of the manganite reduces gradually when increasing thickness, approaching the bulk value. It is observed that the magnetic properties (Curie temperature and saturation magnetization) of the (110) films are significantly improved compared to those of (001) films. These observations, combined with 55Mn-nuclear magnetic resonance data and X-ray photoemission spectroscopy, signal that the depression of the magnetic properties of the more strained (001)LCMO films is not caused by an elastic deformation of the perovskite lattice but rather due to the electronic and chemical phase separation caused by the substrate-induced strain. On the contrary, the thickness dependence of the magnetic properties of the less strained (110)LCMO films are simply described by the elastic deformation of the manganite lattice. We will argue that the different behavior of (001) and (110)LCMO films is a consequence of the dissimilar electronic structure of these interfaces.Comment: 16 pages, 15 figure

    Investigation of the effect of Au2O3 dopant on elastic properties of PbO-B2O3-SeO2: Er2O3 glass ceramics by ultrasonic techniques

    Full text link
    Various elastic coefficients of Au2O3 doped PbO-B2O3-SeO2:Er2O3 (PBSE) glass ceramics were evaluated as functions of Au2O3 content using ultrasonic velocity measurements. The elastic coefficients and micro-hardness showed a decreasing tendency with the concentration of Au2O3. Such decrease is attributed to the increasing concentration of gold metallic particles and [SeO3]2- groups that acted as modifiers and induced imperfections in these samples. Obtained results were observed to be consistent with the conclusions drawn from spectroscopic studies that include X-ray photoelectron spectroscopy (XPS), infrared (IR), photoluminescence (PL) and positron annihilation (PAL) spectroscopy studies. Overall, these studies have revealed that even though, the presence of gold metallic particles is preferable for achieving superior luminescence and electrical properties, presence of such particles caused to decrease the elastic coefficients and micro-hardness of these glass ceramics. However, when the concentration of Au2O3 is increased beyond 0.075 mol%, we have observed a slight increase of elastic coefficients and micro-hardness.Comment: 6 pages, 8 figure
    • …
    corecore