9 research outputs found

    Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urine within the urinary tract is commonly regarded as "sterile" in cultivation terms. Here, we present a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by means of culture-independent high-throughput sequencing techniques.</p> <p>Results</p> <p>Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with the predominant genera detected being <it>Lactobacillus</it>, <it>Prevotella </it>and <it>Gardnerella</it>. The bacterial profiles in the female urine samples studied were complex; considerable variation between individuals was observed and a common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual samples varied substantially and was in the range of 20 - 500.</p> <p>Conclusions</p> <p>Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology.</p

    HIV Genetic Diversity in Cameroon: Possible Public Health Importance

    Full text link
    To monitor the evolving molecular epidemiology and genetic diversity of HIV in a country where many distinct strains cocirculate, we performed genetic analyses on sequences from 75 HIV-1-infected Cameroonians: 74 were group M and 1 was group O. Of the group M sequences, 74 were classified into the following env gp41 subtypes or recombinant forms: CRF02 (n = 54), CRF09 (n = 2), CRF13 (n = 2), A (n = 5), CRF11 (n = 4), CRF06 (n = 1), G (n = 2), F2 (n = 2), and E (n = 1, CRF01), and 1 was a JG recombinant. Comparison of phylogenies for 70 matched gp41 and protease sequences showed inconsistent classifications for 18 (26%) strains. Our data show that recombination is rampant in Cameroon with recombinant viruses continuing to recombine, adding to the complexity of circulating HIV strains. This expanding genetic diversity raises public health concerns for the ability of diagnostic assays to detect these unique HIV mosaic variants and for the development of broadly effective HIV vaccines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63150/1/aid.2006.22.812.pd

    Alterations of microbiota in urine from women with interstitial cystitis

    Get PDF
    Background Interstitial Cystitis (IC) is a chronic inflammatory condition of the bladder with unknown etiology. The aim of this study was to characterize the microbial community present in the urine from IC female patients by 454 high throughput sequencing of the 16S variable regions V1V2 and V6. The taxonomical composition, richness and diversity of the IC microbiota were determined and compared to the microbial profile of asymptomatic healthy female (HF) urine. Results The composition and distribution of bacterial sequences differed between the urine microbiota of IC patients and HFs. Reduced sequence richness and diversity were found in IC patient urine, and a significant difference in the community structure of IC urine in relation to HF urine was observed. More than 90% of the IC sequence reads were identified as belonging to the bacterial genus Lactobacillus, a marked increase compared to 60% in HF urine. Conclusion The 16S rDNA sequence data demonstrates a shift in the composition of the bacterial community in IC urine. The reduced microbial diversity and richness is accompanied by a higher abundance of the bacterial genus Lactobacillus, compared to HF urine. This study demonstrates that high throughput sequencing analysis of urine microbiota in IC patients is a powerful tool towards a better understanding of this enigmatic disease

    Alterations of microbiota in urine from women with interstitial cystitis

    No full text
    Abstract Background Interstitial Cystitis (IC) is a chronic inflammatory condition of the bladder with unknown etiology. The aim of this study was to characterize the microbial community present in the urine from IC female patients by 454 high throughput sequencing of the 16S variable regions V1V2 and V6. The taxonomical composition, richness and diversity of the IC microbiota were determined and compared to the microbial profile of asymptomatic healthy female (HF) urine. Results The composition and distribution of bacterial sequences differed between the urine microbiota of IC patients and HFs. Reduced sequence richness and diversity were found in IC patient urine, and a significant difference in the community structure of IC urine in relation to HF urine was observed. More than 90% of the IC sequence reads were identified as belonging to the bacterial genus Lactobacillus, a marked increase compared to 60% in HF urine. Conclusion The 16S rDNA sequence data demonstrates a shift in the composition of the bacterial community in IC urine. The reduced microbial diversity and richness is accompanied by a higher abundance of the bacterial genus Lactobacillus, compared to HF urine. This study demonstrates that high throughput sequencing analysis of urine microbiota in IC patients is a powerful tool towards a better understanding of this enigmatic disease.</p

    Bacteria, biofilm and honey: A study of the effects of honey on &apos;planktonic&apos; and biofilm-embedded chronic wound bacteria

    No full text
    Abstract Chronically infected wounds are a costly source of suffering. An important factor in the failure of a sore to heal is the presence of multiple species of bacteria, living cooperatively in highly organized biofilms. The biofilm protects the bacteria from antibiotic therapy and the patient&apos;s immune response. Honey has been used as a wound treatment for millennia. The components responsible for its antibacterial properties are now being elucidated. The study aimed to determine the effects of different concentrations of &apos;Medihoney TM &apos; therapeutic honey and Norwegian Forest Honey 1) on the real-time growth of typical chronic wound bacteria; 2) on biofilm formation; and 3) on the same bacteria already embedded in biofilm. Reference strains of MRSE, MRSA, ESBL Klebsiella pneumoniae and Pseudomonas aeruginosa were incubated with dilution series of the honeys in microtitre plates for 20 h. Growth of the bacteria was assessed by measuring optical density every 10 min. Growth curves, biofilm formation and minimum bactericidal concentrations are presented. Both honeys were bactericidal against all the strains of bacteria. Biofilm was penetrated by biocidal substances in honey. Reintroduction of honey as a conventional wound treatment may help improve individual wound care, prevent invasive infections, eliminate colonization, interrupt outbreaks and thereby preserve current antibiotic stocks
    corecore