70 research outputs found

    Intracellular Disposition of Fludarabine Triphosphate in Human Natural Killer Cells

    Get PDF
    Purpose. Fludarabine is a key component of several reduced-intensity conditioning regimens for hematopoietic cell transplantation (HCT). Shortly after reduced-intensity conditioning, the percent of donor natural killer (NK) cells has been associated with progression-free survival. Insufficient suppression of the recipient’s NK cells by fludarabine may lead to lower donor chimerism; however, the effect of fludarabine upon NK cells is poorly understood. Thus, in purified human NK cells we evaluated the uptake and activation of fludarabine to its active metabolite, fludarabine triphosphate (F-ara-ATP), and assessed the degree of interindividual variability in F-ara-ATP accumulation. Methods. Intracellular F-ara-ATP was measured in purified NK cells isolated from healthy volunteers (n = 6) after ex vivo exposure to fludarabine. Gene expression levels of the relevant transporters and enzymes involved in fludarabine uptake and activation were also measured in these cells. Results. F-ara-ATP accumulation (mean ± s.d.) was 6.00 ± 3.67 pmol/1x106 cells/4 hours, comparable to average levels previously observed in CD4+ and CD8+ T-lymphocytes. We observed considerable variability in F-ara-ATP accumulation and mRNA expression of transporters and enzymes relevant to F-ara-ATP accumulation in NK cells from different healthy volunteers. Conclusions. Human NK cells have the ability to form F-ara-ATP intracellularly and large interindividual variability was observed in healthy volunteers. Further studies are needed to evaluate whether F-ara-ATP accumulation in NK cells are associated with apoptosis and clinical outcomes

    Population pharmacokinetics of cyclophosphamide and metabolites in children with neuroblastoma: a report from the children's oncology group.

    Get PDF
    Cyclophosphamide-based regimens are front-line treatment for numerous pediatric malignancies; however, current dosing methods result in considerable interpatient variability in tumor response and toxicity. In this pediatric population, the authors' objectives were (1) to quantify and explain the pharmacokinetic variability of cyclophosphamide and 2 of its metabolites, hydroxycyclophosphamide (HCY) and carboxyethylphosphoramide mustard (CEPM), and (2) to apply a population pharmacokinetic model to describe the disposition of cyclophosphamide and these metabolites. A total of 196 blood samples were obtained from 22 children with neuroblastoma receiving intravenous cyclophosphamide (400 mg/m2/d) and topotecan. Blood samples were quantitated for concentrations of cyclophosphamide, HCY, and CEPM using liquid chromatography-mass spectrometry and analyzed using nonlinear mixed-effects modeling with the NONMEM software system. After model building was complete, the area under the concentration-time curve (AUC) was computed using NONMEM. Cyclophosphamide elimination was described by noninducible and inducible routes, with the latter producing HCY. Glomerular filtration rate was a covariate for the fractional elimination of HCY and its conversion to CEPM. Considerable interpatient variability was observed in the AUC of cyclophosphamide, HCY, and CEPM. These results represent a critical first step in developing pharmacokinetic-linked pharmacodynamic studies in children receiving cyclophosphamide to determine the clinical relevance of the pharmacokinetic variability in cyclophosphamide and its metabolites

    Developing User Personas to Aid in the Design of a User-Centered Natural Product-Drug Interaction Information Resource for Researchers

    Get PDF
    Pharmacokinetic interactions between natural products and conventional drugs can adversely impact patient outcomes. These complex interactions present unique challenges that require clear communication to researchers. We are creating a public information portal to facilitate researchers’ access to credible evidence about these interactions. As part of a user-centered design process, three types of intended researchers were surveyed: drug-drug interaction scientists, clinical pharmacists, and drug compendium editors. Of the 23 invited researchers, 17 completed the survey. The researchers suggested a number of specific requirements for a natural product-drug interaction information resource, including specific information about a given interaction, the potential to cause adverse effects, and the clinical importance. Results were used to develop user personas that provided the development team with a concise and memorable way to represent information needs of the three main researcher types and a common basis for communicating the design’s rationale

    Ecosystem development after mangrove wetland creation : plant–soil change across a 20-year chronosequence

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecosystems 15 (2012): 848-866, doi:10.1007/s10021-012-9551-1.Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses

    Appropriateness of maximum-dose guidelines for vincristine

    No full text

    Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics of Immunosuppressants in Allogeneic Hematopoietic Cell Transplantation: Part II

    No full text
    Part I of this article included a pertinent review of allogeneic hematopoietic cell transplantation (alloHCT), the role of postgraft immunosuppression in alloHCT, and the pharmacokinetics, pharmacodynamics, and pharmacogenomics of the calcineurin inhibitors and methotrexate. In this article (Part II), we review the pharmacokinetics, pharmacodynamics, and pharmacogenomics of mycophenolic acid (MPA), sirolimus, and the antithymocyte globulins (ATG). We then discuss target concentration intervention (TCI) of these postgraft immunosuppressants in alloHCT patients, with a focus on current evidence for TCI and on how TCI may improve clinical management in these patients. Currently, TCI using trough concentrations is conducted for sirolimus in alloHCT patients. Several studies demonstrate that MPA plasma exposure is associated with clinical outcomes, with an increasing number of alloHCT patients needing TCI of MPA. Compared with MPA, there are fewer pharmacokinetic/dynamic studies of rabbit ATG and horse ATG in alloHCT patients. Future pharmacokinetic/dynamic research of postgraft immunosuppressants should include '-omics'-based tools: pharmacogenomics may be used to gain an improved understanding of the covariates influencing pharmacokinetics as well as proteomics and metabolomics as novel methods to elucidate pharmacodynamic responses

    Pharmacokinetics of Oral Mycophenolate Mofetil in Dog: Bioavailability Studies and the Impact of Antibiotic Therapy

    Get PDF
    • …
    corecore