147 research outputs found

    Computational thinking and thinking about computing

    Get PDF
    Computational thinking will influence everyone in every field of endeavour. This vision poses a new educational challenge for our society, especially for our children. In thinking about computing, we need to be attuned to the three drivers of our field: science, technology and society. Accelerating technological advances and monumental societal demands force us to revisit the most basic scientific questions of computing

    A Methodology for Information Flow Experiments

    Full text link
    Information flow analysis has largely ignored the setting where the analyst has neither control over nor a complete model of the analyzed system. We formalize such limited information flow analyses and study an instance of it: detecting the usage of data by websites. We prove that these problems are ones of causal inference. Leveraging this connection, we push beyond traditional information flow analysis to provide a systematic methodology based on experimental science and statistical analysis. Our methodology allows us to systematize prior works in the area viewing them as instances of a general approach. Our systematic study leads to practical advice for improving work on detecting data usage, a previously unformalized area. We illustrate these concepts with a series of experiments collecting data on the use of information by websites, which we statistically analyze

    Conceptions and Misconceptions about Computational Thinking among Italian Primary School Teachers

    Get PDF
    International audienceMany advanced countries are recognizing more and more the importance of teaching computing, in some cases even as early as in primary school. "Computational thinking" is the term often used to denote the conceptual core of computer science or "the way a computer scientist thinks", as Wing put it. Such term - given also the lack of a widely accepted definition - has become a "buzzword" meaning different things to different people. We investigated the Italian primary school teachers' conceptions about computational thinking by analyzing the results of a survey (N=972) conducted in the context of "Programma il Futuro" project. Teachers have been asked to provide a definition of computational thinking and to answer three additional related closed-ended questions. The analysis shows that, while almost half of teachers (43.4%) have included in their definitions some fundamental elements of computational thinking, very few (10.8%) have been able to provide an acceptably complete definition. On a more positive note, the majority is aware that computational thinking is not characterized by coding or by the use of information technology

    Extended Cognition Hypothesis Applied to Computational Thinking in Computer Science Education

    Get PDF
    Computational thinking is a much-used concept in computer science education. Here we examine the concept from the viewpoint of the extended cognition hypothesis. The analysis reveals that the extent of the concept is limited by its strong historical roots in computer science and software engineering. According to the extended cognition hypothesis, there is no meaningful distinction between human cognitive functions and the technology. This standpoint promotes a broader interpretation of the human-technology interaction. Human cognitive processes spontaneously adapt available technology enhanced skills when technology is used in cognitively relevant levels and modalities. A new concept technology synchronized thinking is presented to denote this conclusion. More diverse and practical approach is suggested for the computer scienceeducation.Peer reviewe
    • …
    corecore