15 research outputs found
Increased accuracy of starch granule type quantification using mixture distributions
Background: The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority of the studies that have considered granule types analyse them based on a size threshold rather than chemical composition. This is understandable due to the expense of separating starch into different types. While the use of a size threshold to classify granule type is a low-cost measure, this results in misclassification. We present an alternative, statistical method to quantify the proportion of granule types by a fit of the mixture distribution, along with an R package, a web based app and a video tutorial for how to use the web app to enable its straightforward application. Results: Our results show that the reliability of the gen otypic effects increase approximately 60% using the proportions of the A-type and B-type granule estimated by the mixture distribution over the standard size-threshold measure. Although there was a marginal drop in reliability for C-type granules. The latter is likely due to the low observed genetic variance for C-type granules. Conclusions: The determination of the proportion of granule types from size-distribution is better achieved by using the mixing probabilities from the fit of the mixture distribution rather than using a size-threshold
The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups
Background: Canagliflozin reduces the risk of kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, but effects on specific cardiovascular outcomes are uncertain, as are effects in people without previous cardiovascular disease (primary prevention). Methods: In CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation), 4401 participants with type 2 diabetes mellitus and chronic kidney disease were randomly assigned to canagliflozin or placebo on a background of optimized standard of care. Results: Primary prevention participants (n=2181, 49.6%) were younger (61 versus 65 years), were more often female (37% versus 31%), and had shorter duration of diabetes mellitus (15 years versus 16 years) compared with secondary prevention participants (n=2220, 50.4%). Canagliflozin reduced the risk of major cardiovascular events overall (hazard ratio [HR], 0.80 [95% CI, 0.67-0.95]; P=0.01), with consistent reductions in both the primary (HR, 0.68 [95% CI, 0.49-0.94]) and secondary (HR, 0.85 [95% CI, 0.69-1.06]) prevention groups (P for interaction=0.25). Effects were also similar for the components of the composite including cardiovascular death (HR, 0.78 [95% CI, 0.61-1.00]), nonfatal myocardial infarction (HR, 0.81 [95% CI, 0.59-1.10]), and nonfatal stroke (HR, 0.80 [95% CI, 0.56-1.15]). The risk of the primary composite renal outcome and the composite of cardiovascular death or hospitalization for heart failure were also consistently reduced in both the primary and secondary prevention groups (P for interaction >0.5 for each outcome). Conclusions: Canagliflozin significantly reduced major cardiovascular events and kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, including in participants who did not have previous cardiovascular disease
Fast and efficient screening for wheat Lossof-Gene mutants using multiplexed melt curve analyses
This study describes a new approach in the screening for loss-of-gene mutants in Heavy Ion Bombardment (HIB) mutant populations of genetically complex organisms such as hexaploid bread wheat using multiplexed single-color (SYBR Green) melt curve analyses. The assay was set up for three target genes to test its validity and applicability. For each gene, three genome-specific primer pairs (one for each genome) with distinct melt curves were developed and multiplexed. This allowed screening for “single null mutants” (plants with the target gene deleted in one of the three genomes) for all three genomes in a single reaction. The first two genes (α-Amylase 3 and Epsilon Cyclase) were used to test the approach as HIB null lines for all three genomes were already available for these. The third assay was successfully applied to identify new single null lines of the target gene α-Amylase 2 in an in-house HIB wheat collection. The use of SYBR Green greatly reduced the time and/or cost investment compared to other techniques and the approach proved highly suitable for high-throughput applications
Example of a filtered Microsoft Excel spreadsheet for TaAMY2 single null mutant detection (selected data).
<p>Example of a filtered Microsoft Excel spreadsheet for TaAMY2 single null mutant detection (selected data).</p
Melt curve screening results for the three target genes.
<p>Results show typical melt curves for wild type and single null mutants for the A, B and D genomes for each gene. For TaAMY3, results are also shown for double null mutants (BD_null, AD_null and AB_null).</p
Three options for designing genome-specific primers for multiplexed melt screens.
<p>Option A shows the option with the least number of primers necessary: a genome non-specific (black) forward primer is combined with three genome-specific reverse primers (green: genome A specific, blue: genome B specific, red: genome D specific). Option B shows the option with six genome-specific primers. The last option (C) shows a possible combination of options A and B.</p
PCR primers and products details for multiplexing.
<p>PCR primers and products details for multiplexing.</p
Evaluation of the impact of heat on wheat dormancy, late maturity α-amylase and grain size under controlled conditions in diverse germplasm
Abstract In the Australian wheat belts, short episodes of high temperatures or hot spells during grain filling are becoming increasingly common and have an enormous impact on yield and quality, bringing multi-billion losses annually. This problem will become recurrent under the climate change scenario that forecast increasing extreme temperatures, but so far, no systematic analysis of the resistance to hot spells has yet been performed in a diverse genetic background. We developed a protocol to study the effects of heat on three important traits: grain size, grain dormancy and the presence of Late Maturity α-Amylase (LMA), and we validated it by analysing the phenotypes of 28 genetically diverse wheat landraces and exploring the potential variability existing in the responses to hot spells. Using controlled growth environments, the different genotypes were grown in our standard conditions until 20 days after anthesis, and then moved for 10 days into a heat chamber. Our study showed that our elevated temperature treatment during mid-late filling triggered multiple detrimental effects on yield and quality. We observed a reduction in grain size, a reduction in grain dormancy and increased LMA expression in most of the tested genotypes, but potential resistant lines were identified for each analyzed trait opening new perspectives for future genetic studies and breeding for heat-insensitive commercial lines
Regenerative Biomaterials
Measuring grain characteristics is an integral component of cereal breeding and research into genetic control of seed development. Measures such as thousand grain weight are fast, but do not give an indication of variation within a sample. Other methods exist for detailed analysis of grain size, but are generally costly and very low throughput. Grain colour analysis is generally difficult to perform with accuracy, and existing methods are expensive and involved.We have developed a software method to measure grain size and colour from images captured with consumer level flatbed scanners, in a robust, standardised way. The accuracy and precision of the method have been demonstrated through screening wheat and Brachypodium distachyon populations for variation in size and colour.By using GrainScan, cheap and fast measurement of grain colour and size will enable plant research programs to gain deeper understanding of material, where limited or no information is currently available