197 research outputs found

    Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor

    Get PDF
    RA is a chronic, debilitating disease in which articular inflammation and joint destruction are accompanied by systemic manifestations including anaemia, fatigue and osteoporosis. IL-6 is expressed abundantly in the SF of RA patients and is thought to mediate many of the local and systemic effects of this disease. Unlike a number of other cytokines, IL-6 can activate cells through both membrane-bound (IL-6R) and soluble receptors (sIL-6R), thus widening the number of cell types responsive to this cytokine. Indeed, trans-signalling, where IL-6 binds to the sIL-6R, homodimerizes with glycoprotein 130 subunits and induces signal transduction, has been found to play a key role in acute and chronic inflammation. Elevated levels of IL-6 and sIL-6R in the SF of RA patients can increase the risk of joint destruction and, at the joint level, IL-6/sIL-6R can stimulate pannus development through increased VEGF expression and increase bone resorption as a result of osteoclastogenesis. Systemic effects of IL-6, albeit through conventional or trans-signalling, include regulation of acute-phase protein synthesis, as well as hepcidin production and stimulation of the hypothalamo-pituitary-adrenal axis, the latter two actions potentially leading to anaemia and fatigue, respectively. This review aims to provide an insight into the biological effects of IL-6 in RA, examining how IL-6 can induce the articular and systemic effects of this diseas

    Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor

    Get PDF
    RA is a chronic, debilitating disease in which articular inflammation and joint destruction are accompanied by systemic manifestations including anaemia, fatigue and osteoporosis. IL-6 is expressed abundantly in the SF of RA patients and is thought to mediate many of the local and systemic effects of this disease. Unlike a number of other cytokines, IL-6 can activate cells through both membrane-bound (IL-6R) and soluble receptors (sIL-6R), thus widening the number of cell types responsive to this cytokine. Indeed, trans-signalling, where IL-6 binds to the sIL-6R, homodimerizes with glycoprotein 130 subunits and induces signal transduction, has been found to play a key role in acute and chronic inflammation. Elevated levels of IL-6 and sIL-6R in the SF of RA patients can increase the risk of joint destruction and, at the joint level, IL-6/sIL-6R can stimulate pannus development through increased VEGF expression and increase bone resorption as a result of osteoclastogenesis. Systemic effects of IL-6, albeit through conventional or trans-signalling, include regulation of acute-phase protein synthesis, as well as hepcidin production and stimulation of the hypothalamo-pituitary-adrenal axis, the latter two actions potentially leading to anaemia and fatigue, respectively. This review aims to provide an insight into the biological effects of IL-6 in RA, examining how IL-6 can induce the articular and systemic effects of this diseas

    Cytokines in chronic rheumatic diseases: is everything lack of homeostatic balance?

    Get PDF
    Biological systems have powerful inbuilt mechanisms of control intended to maintain homeostasis. Cytokines are no exception to this rule, and imbalance in cytokine activities may lead to inflammation with subsequent tissue and organ damage, altered function, and death. Balance is achieved through multiple, not mutually exclusive, mechanisms including the simultaneous production of agonist and antagonistic cytokines, expression of soluble receptors or membrane-bound nonsignaling receptors, priming and/or reprogramming of signaling, and uncoupling of ligand/receptor pairing from signal transduction. Insight into cytokine balance is leading to novel therapeutic approaches particularly in autoimmune conditions, which are intimately linked to a dysregulated cytokine production

    Polarized subsets of human T-helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts

    Get PDF
    The role of fibroblasts in inflammatory processes and their cross-talk with T cells is increasingly being recognized. Our aim was to explore the capacity of dermal fibroblasts to produce inflammatory chemokines potentially involved in fibrosis occurring in response to contact with polarized human T cells. Our findings indicate that the program of chemokine production by fibroblasts is differentially regulated depending on the T-helper (Th) cell subset used to activate them. Thus, Th1 and Th2 cells preferentially induced production of IFN-γ inducible protein (IP)-10 and IL-8, respectively, whereas monocyte chemoattractant protein (MCP)-1 was equally induced by both subsets at mRNA and protein levels. Neutralization experiments indicated that membrane-associated tumour necrosis factor-α and IL-1 played a major role in the induction of IL-8 and MCP-1 by Th1 and Th2 cells, whereas membrane-associated IFN-γ (present only in Th1 cells) was responsible, at least in part, for the lower IL-8 and higher IP-10 production induced by Th1 cells. The contributions of tumour necrosis factor-α, IL-1 and IFN-α were confirmed when fibroblasts were cultured separated in a semipermeable membrane from living T cells activated by CD3 cross-linking. We observed further differences when we explored signal transduction pathway usage in fibroblasts. Pharmacological inhibition of c-Jun N-terminal kinase and nuclear factor-κB resulted in inhibition of IL-8 mRNA transcription induced by Th1 cells but not that by Th2 cells, whereas inhibition of MEK/ERK (mitogen-activated protein kinase of extracellular signal-regulated kinase/extracellular signal-regulated kinase) and nuclear factor-κB resulted in inhibition of MCP-1 mRNA induced by Th2 but not by Th1 cells. Finally, no distinct differences in chemokine production were observed when the responses to T cell contact or to prototypic Th1 and Th2 cytokines were examined in systemic sclerosis versus normal fibroblasts. These findings indicate that fibroblasts have the potential to participate in shaping the inflammatory response through the activation of flexible programs of chemokine production that depend on the Th subset eliciting their response

    Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: a control mechanism of cytokine production?

    Get PDF
    The production of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) by monocytes is strongly induced by direct contact with stimulated T lymphocytes, and this mechanism may be critical in the pathogenesis of rheumatoid arthritis (RA). Apolipoprotein A-I (apoA-I) blocks contact-mediated activation of monocytes, causing inhibition of TNF-α and IL-1β production. This study examined the hypothesis that apoA-I may have a regulatory role at sites of macrophage activation by T lymphocytes in inflamed RA synovial tissue. Synovial tissue samples were obtained after arthroscopy from patients with early untreated RA or treated RA and from normal subjects. As determined by immunohistochemistry, apoA-I was consistently present in inflamed synovial tissue that contained infiltrating T cells and macrophages, but it was absent from noninflamed tissue samples obtained from treated patients and from normal subjects. ApoA-I staining was abundant in the perivascular areas and extended in a halo-like pattern to the surrounding cellular infiltrate. C-reactive protein and serum amyloid A were not detected in the same perivascular areas of inflamed tissues. The abundant presence of apoA-I in the perivascular cellular infiltrates of inflamed RA synovial tissue extends the observations in vitro that showed that apoA-I can modify contact-mediated macrophage production of TNF-α and IL-1β. ApoA-I was not present in synovium from patients in apparent remission, suggesting that it has a specific role during phases of disease activity. These findings support the suggestion that the biologic properties of apoA-I, about which knowledge is newly emerging, include anti-inflammatory activities and therefore have important implications for the treatment of chronic inflammatory diseases

    IL-21 promotes survival and maintains a naive phenotype in human CD4+ T lymphocytes

    Get PDF
    IL-21 is a key T-cell growth factor (TCGF) involved in innate and adaptive immune response. It contributes to the proliferation of naive, but not memory T lymphocytes. However, the full spectrum of IL-21 activity on T cells remains unclear. Here, we demonstrate that IL-21 primarily maintains the expression of specific naive cell surface markers such as CD45RA, CD27, CD62L and CCR7 on human CD4+ T lymphocytes and that the expression of CCR7 induces cell migration by means of CCL21 chemoattraction. These effects contrast with those of IL-2 which induced the marked proliferation of CD4+ T lymphocytes, leading to an activated-memory phenotype. Nevertheless, IL-21 maintained cell cycle activation and expression of proliferation markers, including proliferating cell nuclear antigen and Ki-67, and triggered T-cell proliferation via TCR and co-stimulation pathways. Unlike IL-2, IL-21 decreased the expression of the anti-apoptotic Bcl-2 protein, which correlated with the absence of activation of the phosphatidylinositol 3′-kinase/Akt signaling pathway. Thus, IL-21 is a TCGF whose function is the preservation of a pool of CD4+ T lymphocytes in a naive phenotype, with a low proliferation rate but with the persistence of cell cycling proteins and cell surface expression of CCR7. These findings strongly suggest that IL-21 plays a part in innate and adaptive immune response owing to homeostasis of T cells and their homing to secondary lymphoid organ

    The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors

    Get PDF
    Natural killer (NK) cells play a crucial role in the immune response to micro-organisms and tumours. Recent evidence suggests that NK cells also regulate the adaptive T-cell response and that it might be possible to exploit this ability to eliminate autoreactive T cells in autoimmune disease and alloreactive T cells in transplantation. Mature NK cells consist of a highly diverse population of cells that expresses different receptors to facilitate recognition of diseased cells and possibly pathogens themselves. Ex vivo culture of NK cells with cytokines such as IL-2 and IL-15 is an approach that permits significant expansion of the NK cell subpopulations, which are likely to have potent antitumour, antiviral, or immunomodulatory effects in autoimmunity. Our data indicate that the addition of IL-21 has a synergistic effect by increasing the numbers of NK cells on a large scale. IL-2 and IL-15 may induce the expression of killer cell immunoglobulin-like receptors (KIRs) in KIR-negative populations, the c-lectin receptor NKG2D and the natural cytotoxic receptor NKp44. The addition of IL-21 to IL-15 or IL-2 can modify the pattern of the KIR receptors and inhibit NKp44 expression by reducing the expression of the adaptor DAP-12. IL-21 also preserved the production of interferon-γ and enhanced the cytotoxic properties of NK cells. Our findings indicate that the proinflammatory cytokines IL-2, IL-15 and IL-21 can modify the peripheral repertoire of NK cells. These properties may be used to endow subpopulations of NK cells with specific phenotypes, which may be used in ex vivo cellular immunotherapy strategies
    corecore