30 research outputs found

    Le 4-fluoro-11[bĂȘta]-mĂ©thoxy-[[indice supĂ©rieur 18]F]fluoroestradiol (4FMFES) pour l'imagerie des rĂ©cepteurs d'oestrogĂšnes par tomographie par Ă©mission de positrons

    No full text
    La majoritĂ© des cancers du sein surexpriment des rĂ©cepteurs d'oestrogĂšnes (RO) et/ou de progestĂ©rone. ConnaĂźtre le statut en RO est primordial pour dĂ©terminer le meilleur traitement Ă  offrir aux patientes. Ce statut est habituellement dĂ©terminĂ© par biopsie, une technique invasive et limitĂ©e aux sites accessibles, en plus d'ĂȘtre sujette Ă  l'hĂ©tĂ©rogĂ©nĂ©itĂ© de l'expression des RO au sein d'une mĂȘme lĂ©sion tumorale et entre les lĂ©sions (lĂ©sion primaire et mĂ©tastases). L'imagerie des RO est une alternative non-invasive pour dĂ©terminer in vivo le statut en RO des tumeurs. Parmi les nombreux traceurs des RO radiomarquĂ©s dĂ©veloppĂ©s durant les 3 derniĂšres dĂ©cennies, le 16[alpha]-[[indice supĂ©rieur 18]F]-fluoroestradiol (FES), un traceur pour la tomographie par Ă©mission de positrons (TEP), est celui ayant connu le plus de succĂšs. Cependant, il est mĂ©tabolisĂ© rapidement in vivo, ce qui limite son accumulation optimale au niveau des tumeurs exprimant les RO (RO+). Parmi une sĂ©rie de nouveaux traceurs des RO, le 4-fluoro-11[bĂȘta]-mĂ©thoxy-16[alpha]-[[indice supĂ©rieur 18]F]fluoroestradiol (4FMFES) a dĂ©montrĂ© des rĂ©sultats prĂ©cliniques prometteurs. Comparativement au FES, le 4FMFES Ă  une trĂšs faible affinitĂ© pour la sex hormone-binding globulin (SHBG). Certains auteurs ont suggĂ©rĂ© qu'une bonne affinitĂ© pour la SHBG est souhaitable en imagerie des RO chez l'humain. L'activitĂ© spĂ©cifique effective (ASE), ou la quantitĂ© de radioactivitĂ© par quantitĂ© de masse biologiquement active, est un paramĂštre important en imagerie des RO, un systĂšme saturable. Dans nos expĂ©riences de saturation in vivo chez la souris, un effet de masse fut observĂ© au niveau de l'utĂ©rus et de tumeurs murines RO+ implantĂ©es Ă  partir d'une masse Ă©quivalente d'estradiol d'environ 100 pmol. Nous avons dĂ©veloppĂ© une mĂ©thode simple et efficace pour mesurer de routine l'ASE des traceurs des RO, qui utilise la scintillation par proximitĂ© lors d'un essai compĂ©titif de liaison sur des RO purifiĂ©s. Nous avons Ă©valuĂ© la biodistribution et la dosimĂ©trie du 4FMFES lors d'une Ă©tude de phase I chez dix femmes saines. AprĂšs avoir Ă©tĂ© injectĂ© avec du 4FMFES, chaque participante a subi 4 acquisitions TEP rapides sĂ©riĂ©es, couplĂ©es Ă  2 acquisitions tomodensitomĂ©triques (TDM) Ă  faible dose, durant 2 heures, sur une camĂ©ra TEP/TDM. Le logiciel OLINDA fut utilisĂ© pour calculer les courbes temps-activitĂ©, les temps de rĂ©sidence et la dosimĂ©trie. L'activitĂ© sanguine et plasmatique fut mesurĂ©e par des prises de sang sĂ©riĂ©es.La sĂ»retĂ© du 4FMFES a Ă©tĂ© Ă©valuĂ©e par le monitoring des signes vitaux et de certains paramĂštres sanguins et urinaires. Le 4FMFES fut bien tolĂ©rĂ© chez toutes les participantes. Le foie a dĂ©montrĂ© une captation intense, associĂ©e Ă  une excrĂ©tion hĂ©patobiliaire massive, et relativement peu d'excrĂ©tion urinaire. Les demi-vies de clairance de l'activitĂ© sanguine et plasmatique, entre 30-150 minutes post-injection, Ă©taient d'environ 110 minutes.La captation utĂ©rine fut visualisĂ©e chez toutes les participantes et est demeurĂ©e relativement constante en fonction du temps. L'activitĂ© de bruit de fond Ă©tait faible et dĂ©croissante en fonction du temps, rĂ©sultant en un ratio utĂ©rus-sur-bruit croissant. L'organe critique fut la vĂ©sicule biliaire (0.80 « 0.51 mGy/MBq), suivie par le cĂŽlon proximal, l'intestin grĂȘle et le foie. Pour une dose typique de 185 MBq, la dose effective (DE) fut calculĂ©e Ă  4.82 « 0.70 mSv. Le 4FMFES est considĂ©rĂ© sĂ©curitaire pour usage chez l'humain et sa DE demeure dans des limites acceptables. Le 4FMFES a dĂ©montrĂ© une captation utĂ©rine significative tant chez les participantes prĂ©mĂ©nopausĂ©es que mĂ©nopausĂ©es, qui est probablement mĂ©diĂ©e par les RO, i.e. spĂ©cifique. Aussi, ces rĂ©sultats suggĂšrent que la liaison Ă  la SHBG n'est pas nĂ©cessaire pour imager les RO in vivo chez l'humain. Une comparaison directe entre le FES et le 4FMFES chez des patientes atteintes du cancer du sein sera nĂ©cessaire pour dĂ©terminer quel est le traceur optimal pour l'imagerie TEP des RO

    Le 4-fluoro-11[bĂȘta]-mĂ©thoxy-[[indice supĂ©rieur 18]F]fluoroestradiol (4FMFES) pour l'imagerie des rĂ©cepteurs d'oestrogĂšnes par tomographie par Ă©mission de positrons

    No full text
    La majoritĂ© des cancers du sein surexpriment des rĂ©cepteurs d'oestrogĂšnes (RO) et/ou de progestĂ©rone. ConnaĂźtre le statut en RO est primordial pour dĂ©terminer le meilleur traitement Ă  offrir aux patientes. Ce statut est habituellement dĂ©terminĂ© par biopsie, une technique invasive et limitĂ©e aux sites accessibles, en plus d'ĂȘtre sujette Ă  l'hĂ©tĂ©rogĂ©nĂ©itĂ© de l'expression des RO au sein d'une mĂȘme lĂ©sion tumorale et entre les lĂ©sions (lĂ©sion primaire et mĂ©tastases). L'imagerie des RO est une alternative non-invasive pour dĂ©terminer in vivo le statut en RO des tumeurs. Parmi les nombreux traceurs des RO radiomarquĂ©s dĂ©veloppĂ©s durant les 3 derniĂšres dĂ©cennies, le 16[alpha]-[[indice supĂ©rieur 18]F]-fluoroestradiol (FES), un traceur pour la tomographie par Ă©mission de positrons (TEP), est celui ayant connu le plus de succĂšs. Cependant, il est mĂ©tabolisĂ© rapidement in vivo, ce qui limite son accumulation optimale au niveau des tumeurs exprimant les RO (RO+). Parmi une sĂ©rie de nouveaux traceurs des RO, le 4-fluoro-11[bĂȘta]-mĂ©thoxy-16[alpha]-[[indice supĂ©rieur 18]F]fluoroestradiol (4FMFES) a dĂ©montrĂ© des rĂ©sultats prĂ©cliniques prometteurs. Comparativement au FES, le 4FMFES Ă  une trĂšs faible affinitĂ© pour la sex hormone-binding globulin (SHBG). Certains auteurs ont suggĂ©rĂ© qu'une bonne affinitĂ© pour la SHBG est souhaitable en imagerie des RO chez l'humain. L'activitĂ© spĂ©cifique effective (ASE), ou la quantitĂ© de radioactivitĂ© par quantitĂ© de masse biologiquement active, est un paramĂštre important en imagerie des RO, un systĂšme saturable. Dans nos expĂ©riences de saturation in vivo chez la souris, un effet de masse fut observĂ© au niveau de l'utĂ©rus et de tumeurs murines RO+ implantĂ©es Ă  partir d'une masse Ă©quivalente d'estradiol d'environ 100 pmol. Nous avons dĂ©veloppĂ© une mĂ©thode simple et efficace pour mesurer de routine l'ASE des traceurs des RO, qui utilise la scintillation par proximitĂ© lors d'un essai compĂ©titif de liaison sur des RO purifiĂ©s. Nous avons Ă©valuĂ© la biodistribution et la dosimĂ©trie du 4FMFES lors d'une Ă©tude de phase I chez dix femmes saines. AprĂšs avoir Ă©tĂ© injectĂ© avec du 4FMFES, chaque participante a subi 4 acquisitions TEP rapides sĂ©riĂ©es, couplĂ©es Ă  2 acquisitions tomodensitomĂ©triques (TDM) Ă  faible dose, durant 2 heures, sur une camĂ©ra TEP/TDM. Le logiciel OLINDA fut utilisĂ© pour calculer les courbes temps-activitĂ©, les temps de rĂ©sidence et la dosimĂ©trie. L'activitĂ© sanguine et plasmatique fut mesurĂ©e par des prises de sang sĂ©riĂ©es.La sĂ»retĂ© du 4FMFES a Ă©tĂ© Ă©valuĂ©e par le monitoring des signes vitaux et de certains paramĂštres sanguins et urinaires. Le 4FMFES fut bien tolĂ©rĂ© chez toutes les participantes. Le foie a dĂ©montrĂ© une captation intense, associĂ©e Ă  une excrĂ©tion hĂ©patobiliaire massive, et relativement peu d'excrĂ©tion urinaire. Les demi-vies de clairance de l'activitĂ© sanguine et plasmatique, entre 30-150 minutes post-injection, Ă©taient d'environ 110 minutes.La captation utĂ©rine fut visualisĂ©e chez toutes les participantes et est demeurĂ©e relativement constante en fonction du temps. L'activitĂ© de bruit de fond Ă©tait faible et dĂ©croissante en fonction du temps, rĂ©sultant en un ratio utĂ©rus-sur-bruit croissant. L'organe critique fut la vĂ©sicule biliaire (0.80 « 0.51 mGy/MBq), suivie par le cĂŽlon proximal, l'intestin grĂȘle et le foie. Pour une dose typique de 185 MBq, la dose effective (DE) fut calculĂ©e Ă  4.82 « 0.70 mSv. Le 4FMFES est considĂ©rĂ© sĂ©curitaire pour usage chez l'humain et sa DE demeure dans des limites acceptables. Le 4FMFES a dĂ©montrĂ© une captation utĂ©rine significative tant chez les participantes prĂ©mĂ©nopausĂ©es que mĂ©nopausĂ©es, qui est probablement mĂ©diĂ©e par les RO, i.e. spĂ©cifique. Aussi, ces rĂ©sultats suggĂšrent que la liaison Ă  la SHBG n'est pas nĂ©cessaire pour imager les RO in vivo chez l'humain. Une comparaison directe entre le FES et le 4FMFES chez des patientes atteintes du cancer du sein sera nĂ©cessaire pour dĂ©terminer quel est le traceur optimal pour l'imagerie TEP des RO

    Guidance and control of a platoon of vehicles adapted to changing environment conditions

    No full text
    Abstract – This paper describes the decentralized longitudinal control of a ten-vehicle platoon. An adapted time-headway distance approach is adopted, i.e., that each vehicle has to respect a “time-to-contact ” with its preceding vehicle. The adaptation is made relatively to the vehicle dynamics and the road conditions. A twolevel longitudinal controller is developed using the Linear Quadratic Regulor (LQR) and feedback linearization methods. String stability analysis is discussed resulting in a definition for the adopted control strategy. A pentic polynomial guidance algorithm is used to limit the acceleration when a vehicle is reaching a platoon. Simulations showing the leader velocity variation for normal, icy and snowy roads and the pentic guidance approach are presented

    Emulation of collaborative driving systems using mobile robots

    No full text
    Abstract – The long-term objective of this project is to derive systems that would allow the safe and efficient coordination of collaborating vehicles in highdensity highway traffic in order to alleviate traffic congestion and reduce driving stress. The objective of the research is to assure a safe movement of each vehicle, inside the collaborative driving system. An architecture for the control and collaboration of vehicle is needed. We will present the importance of communication in CDS. After studying previous projects architecture, the control scenarios for making vehicles join a pre-existing platoon, leave a platoon, join two platoons, do lane transition of a platoon or for ensuring safe emergency procedures are presented. The architecture developed to assure the safe execution of those scenarios is then exposed

    PSMA Theranostics: Current Landscape and Future Outlook

    No full text
    Introduction: Prostate-specific membrane antigen (PSMA) is a promising novel molecular target for imaging diagnostics and therapeutics (theranostics). There has been a growing body of evidence supporting PSMA theranostics approaches in optimizing the management of prostate cancer and potentially altering its natural history. Methods: We utilized PubMed and Google Scholar for published studies, and clinicaltrials.gov for planned, ongoing, and completed clinical trials in PSMA theranostics as of June 2021. We presented evolving evidence for various PSMA-targeted radiopharmaceutical agents in the treatment paradigm for prostate cancer, as well as combination treatment strategies with other targeted therapy and immunotherapy. We highlighted the emerging evidence of PSMA and fluorodeoxyglucose (FDG) PET/CT as a predictive biomarker for PSMA radioligand therapy. We identified seven ongoing clinical trials in oligometastatic-directed therapy using PSMA PET imaging. We also presented a schematic overview of 17 key PSMA theranostic clinical trials throughout the various stages of prostate cancer. Conclusions: In this review, we presented the contemporary and future landscape of theranostic applications in prostate cancer with a focus on PSMA ligands. As PSMA theranostics will soon become the standard of care for the management of prostate cancer, we underscore the importance of integrating nuclear medicine physicians into the multidisciplinary team

    Deep transformer-based personalized dosimetry from SPECT/CT images:a hybrid approach for [<sup>177</sup>Lu]Lu-DOTATATE radiopharmaceutical therapy

    Get PDF
    Purpose: Accurate dosimetry is critical for ensuring the safety and efficacy of radiopharmaceutical therapies. In current clinical dosimetry practice, MIRD formalisms are widely employed. However, with the rapid advancement of deep learning (DL) algorithms, there has been an increasing interest in leveraging the calculation speed and automation capabilities for different tasks. We aimed to develop a hybrid transformer-based deep learning (DL) model that incorporates a multiple voxel S-value (MSV) approach for voxel-level dosimetry in [177Lu]Lu-DOTATATE therapy. The goal was to enhance the performance of the model to achieve accuracy levels closely aligned with Monte Carlo (MC) simulations, considered as the standard of reference. We extended our analysis to include MIRD formalisms (SSV and MSV), thereby conducting a comprehensive dosimetry study. Methods: We used a dataset consisting of 22 patients undergoing up to 4 cycles of [177Lu]Lu-DOTATATE therapy. MC simulations were used to generate reference absorbed dose maps. In addition, MIRD formalism approaches, namely, single S-value (SSV) and MSV techniques, were performed. A UNEt TRansformer (UNETR) DL architecture was trained using five-fold cross-validation to generate MC-based dose maps. Co-registered CT images were fed into the network as input, whereas the difference between MC and MSV (MC-MSV) was set as output. DL results are then integrated to MSV to revive the MC dose maps. Finally, the dose maps generated by MSV, SSV, and DL were quantitatively compared to the MC reference at both voxel level and organ level (organs at risk and lesions). Results: The DL approach showed slightly better performance (voxel relative absolute error (RAE) = 5.28 ± 1.32) compared to MSV (voxel RAE = 5.54 ± 1.4) and outperformed SSV (voxel RAE = 7.8 ± 3.02). Gamma analysis pass rates were 99.0 ± 1.2%, 98.8 ± 1.3%, and 98.7 ± 1.52% for DL, MSV, and SSV approaches, respectively. The computational time for MC was the highest (~2 days for a single-bed SPECT study) compared to MSV, SSV, and DL, whereas the DL-based approach outperformed the other approaches in terms of time efficiency (3 s for a single-bed SPECT). Organ-wise analysis showed absolute percent errors of 1.44 ± 3.05%, 1.18 ± 2.65%, and 1.15 ± 2.5% for SSV, MSV, and DL approaches, respectively, in lesion-absorbed doses. Conclusion: A hybrid transformer-based deep learning model was developed for fast and accurate dose map generation, outperforming the MIRD approaches, specifically in heterogenous regions. The model achieved accuracy close to MC gold standard and has potential for clinical implementation for use on large-scale datasets.</p

    Quantitative 177Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system

    No full text
    Purpose: The combination of single photon emission computed tomography (SPECT) and computer tomography (CT) that incorporates iterative reconstruction algorithms with attenuation and scatter correction should facilitate accurate non-invasive quantitative imaging. Quantitative SPECT (QSPECT) may improve diagnostic ability and could be useful for many applications including dosimetry assessment. Using 177Lu, we developed a QSPECT method using a commercially available SPECT/CT system. Methods: Serial SPECT of 177Lu sources (89–12,400 MBq) were acquired with multiple contiguous energy windows along with a co-registered CT, and were reconstructed using an iterative algorithm with attenuation and scatter correction. Camera sensitivity (based on reconstructed SPECT count rate) and dead-time (based on wide-energy spectrum count rate) were resolved by non-linear curve fit. Utilizing these parameters, a SPECT dataset can be converted to a QSPECT dataset allowing quantitation in Becquerels per cubic centimetre or standardized uptake value (SUV). Validation QSPECT/CT studies were performed on a 177Lu cylindrical phantom (7 studies) and on 5 patients (6 studies) who were administered a therapeutic dose of [177Lu]octreotate. Results: The QSPECT sensitivity was 1.08 × 10−5 ± 0.02 × 10−5 s−1 Bq−1. The paralyzing dead-time constant was 0.78 ± 0.03 ”s. The measured total activity with QSPECT deviated from the calibrated activity by 5.6 ± 1.9% and 2.6 ± 1.8%, respectively, in phantom and patients. Dead-time count loss up to 11.7% was observed in patient studies. Conclusion: QSPECT has high accuracy both in our phantom model and in clinical practice following [177Lu]octreotate therapy. This has the potential to yield more accurate dosimetry estimates than planar imaging and facilitate therapeutic response assessment. Validating this method with other radionuclides could open the way for many other research and clinical applications

    Optimizing the Schedule of PARP Inhibitors in Combination with 177Lu-DOTATATE: A Dosimetry Rationale

    No full text
    177Lu-DOTATATE for neuroendocrine tumours is considered a low-toxicity treatment and may therefore be combined with other pharmaceuticals to potentiate its efficacy. One approach is to add a poly-[ADP-ribose]-polymerase (PARP) inhibitor to decrease the ability of tumour cells to repair 177Lu-induced DNA damage. To decrease the risk of side effects, the sequencing should be optimized according to the tumour-to-normal tissue enhanced dose ratio (TNED). The aim of this study was to investigate how to enhance 177Lu-DOTATATE by optimal timing of the addition of a PARP inhibitor. Biokinetic modelling was performed based on the absorbed dose to the bone marrow, kidneys and tumour; determined from SPECT/CT and planar images from 17 patients treated with 177Lu-DOTATATE. To investigate the theoretical enhanced biological effect of a PARP inhibitor during 177Lu-DOTATATE treatment, the concept of relative biological effectiveness (RBE) was used, and PARP inhibitor administration was simulated over different time intervals. The absorbed dose rate for the tumour tissue demonstrated an initial increase phase until 12 h after infusion followed by a slow decrease. In contrast, the bone marrow showed a rapid initial dose rate decrease. Twenty-eight days after infusion of 177Lu-DOTATATE, the full absorbed dose to the bone marrow and kidney was reached. Using an RBE value of 2 for both the tumour and normal tissues, the TNED was increased compared to 177Lu-DOTATATE alone. According to the modelling, the PARP inhibitor should be introduced approximately 24 h after the start of 177Lu-DOTATATE treatment and be continued for up to four weeks to optimize the TNED. Based on these results, a phase I trial assessing the combination of olaparib and 177Lu-DOTATATE in somatostatin receptor-positive tumours was launched in 2020 (NCT04375267)

    Comprehensive SPECT/CT system characterization and calibration for 177Lu quantitative SPECT (QSPECT) with dead-time correction

    No full text
    Abstract Background Personalization of Âč⁷⁷Lu-based radionuclide therapy requires implementation of dosimetry methods that are both accurate and practical enough for routine clinical use. Quantitative single-photon emission computed tomography/computed tomography (QSPECT/CT) is the preferred scanning modality to achieve this and necessitates characterizing the response of the camera, and calibrating it, over the full range of therapeutic activities and system capacity. Various methods to determine the camera calibration factor (CF) and the deadtime constant (τ) were investigated, with the aim to design a simple and robust protocol for quantitative Âč⁷⁷Lu imaging. Methods The SPECT/CT camera was equipped with a medium energy collimator. Multiple phantoms were used to reproduce various attenuation conditions: rod sources in air or water-equivalent media, as well as a Jaszczak phantom with inserts. Planar and tomographic images of a wide range of activities were acquired, with multiple energy windows for scatter correction (double or triple energy window technique) as well as count rate monitoring over a large spectrum of energy. Dead time was modelled using the paralysable model. CF and τ were deduced by curve fitting either separately in two steps (CF determined first using a subset of low-activity acquisitions, then τ determined using the full range of activity) or at once (both CF and τ determined using the full range of activity). Total or segmented activity in the SPECT field of view was computed. Finally, these methods were compared in terms of accuracy to recover the known activity, in particular when planar-derived parameters were applied to the SPECT data. Results The SPECT camera was shown to operate as expected on a finite count rate range (up to ~ 350 kcps over the entire energy spectrum). CF and τ from planar (sources in air) and SPECT segmented Jaszczak data yielded a very good agreement (CF < 1% and τ < 3%). Determining CF and τ from a single curve fit made dead-time-corrected images less prone to overestimating recovered activity. Using triple-energy window scatter correction while acquiring one or more additional energy window(s) to enable wide-spectrum count rate monitoring (i.e. ranging 55–250 or 18–680 keV) yielded the most consistent results across the various geometries. The final, planar-derived calibration parameters for our system were a CF of 9.36 ± 0.01 cps/MBq and a τ of 0.550 ± 0.003 Όs. Using the latter, the activity in a Jaszczak phantom could be quantified by QSPECT with an accuracy of 0.02 ± 1.10%. Conclusions Serial planar acquisitions of sources in air using an activity range covering the full operational capacity of the SPECT/CT system, with multiple energy windows for wide-spectrum count rate monitoring, and followed by simultaneous determination of CF and τ using a single equation derived from the paralysable model, constitutes a practical method to enable accurate dead-time-corrected QSPECT imaging in a post-Âč⁷⁷Lu radionuclide therapy setting.Medicine, Faculty ofOther UBCNon UBCRadiology, Department ofReviewedFacult
    corecore