87 research outputs found

    Adipose segmentation in small animals at 7T: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small animal MRI at 7 Tesla (T) provides a useful tool for adiposity research. For adiposity researchers, separation of fat from surrounding tissues and its subsequent quantitative or semi- quantitative analysis is a key task. This is a relatively new field and a priori it cannot be known which specific biological questions related to fat deposition will be relevant in a specific study. Thus it is impossible to predict what accuracy and what spatial resolution will be required in all cases and even difficult what accuracy and resolution will be useful in most cases. However the pragmatic time constraints and the practical resolution ranges are known for small animal imaging at 7T. Thus we have used known practical constraints to develop a method for fat volume analysis based on an optimized image acquisition and image post processing pair.</p> <p>Methods</p> <p>We designed a fat segmentation method based on optimizing a variety of factors relevant to small animal imaging at 7T. In contrast to most previously described MRI methods based on signal intensity of T1 weighted image alone, we chose to use parametric images based on Multi-spin multi-echo (MSME) Bruker pulse sequence which has proven to be particularly robust in our laboratory over the last several years. The sequence was optimized on a T1 basis to emphasize the signal. T2 relaxation times can be calculated from the multi echo data and we have done so on a pixel by pixel basis for the initial step in the post processing methodology. The post processing consists of parallel paths. On one hand, the weighted image is precisely divided into different regions with optimized smoothing and segmentation methods; and on the other hand, a confidence image is deduced from the parametric image according to the distribution of relaxation time relationship of typical adipose. With the assistance of the confidence image, a useful software feature was implemented to which enhances the data and in the end results in a more reliable and flexible method for adipose evaluation.</p> <p>Results</p> <p>In this paper, we describe how we arrived at our recommended procedures and key aspects of the post-processing steps. The feasibility of the proposed method is tested on both simulated and real data in this preliminary research. A research tool was created to help researchers segment out fat even when the anatomical information is of low quality making it difficult to distinguish between fat and non-fat. In addition, tool is designed to allow the operator to make adjustments to many of the key steps for comparison purposes and to quantitatively assess the difference these changes make. Ultimately our flexible software lets the researcher define key aspects of the fat segmentation and quantification.</p> <p>Conclusions</p> <p>Combining the full T2 parametric information with the optimized first echo image information, the research tool enhances the reliability of the results while providing more flexible operations than previous methods. The innovation in the method is to pair an optimized and very specific image acquisition technique to a flexible but tuned image post processing method. The separation of the fat is aided by the confidence distribution of regions produced on a scale relevant to and dictated by practical aspects of MRI at 7T.</p

    Traitement cérébral d'odeurs biologiquement signifiantes, révélé chez le rat par imagerie RMN fonctionnelle du manganèse

    No full text
    L'objectif de cette thèse est d'utiliser MEMRI (manganese-enhanced magnetic resonance imaging) pour étudier le traitement d'odeurs signifiantes dans le cortex olfactif primaire de rats dans les conditions les plus proches de la perception naturelle. MEMRI est une méthode fondée sur la détection d'un agent de contraste fonctionnel et rémanent de l'activité neuronale, le manganèse, qui a prouvé son efficacité pour montrer le traitement différencié d'odeurs dans le bulbe olfactif chez l'animal vigile. Cependant, cette technique a été surtout utilisée pour tracer les voies neuronales, mais relativement peu pour explorer des fonctions sensorielles. C'est pourquoi nous avons conduit deux études visant l'une à définir les conditions d'application du manganèse et l'autre à optimiser le traitement des images MEMRI, avant d'aborder la question biologique proprement dite. S'appuyant sur ces développement méthodologiques, nous avons ensuite utilisé MEMRI pour étudier les variations du traitement d'odeurs signifiantes (odeurs de nourriture et de prédateur comparées à une situation de contrôle) dans le cortex olfactif primaire de rats. Nous avons montré que le traitement cérébral d'une odeur de prédateur est différent de celui de la situation de contrôle dans le cortex olfactif primaire. Nous avons confirmé ce résultat par immunomarquage Fos dans le cortex piriforme. Mis ensemble, les résultats de MEMRI et Fos suggèrent que le traitement cérébral d'une odeur peut varier en terme de taille de populations de neurone recrutés ainsi qu'en termes d'intensité de l'activation de ces neurones. Enfin, les résultats MEMRI montrent qu'un message olfactif crucial, pour la survie, est traité asymétriquement dans le cerveau. Les avancées méthodologiques et scientifiques qu'apporte cette thèse ouvrent la voie à une meilleure compréhension du traitement cérébral des odeurs.The aim of this thesis was to use MEMRI (manganese-enhanced magnetic resonance imaging) for studying the processing of behaviorally significant odors in the rat primary olfactory cortex, under conditions close to natural perception in awake animals. MEMRI is a method based on the detection of o functional and remanent contrast agent, manganese, which has proved to be valuable dor studying odor processing in the olfactory bulb. However , this method has mainly been used to trace neuronal pathways, but seldom to explore sensory functions. Here, we have conducted two studies to define the conditions of application of manganese and to optimize processing of MEMRI images. Based on these methodological developments, we have then used MEMRI to investigate the activation of central olfactory structures following exposure of awake rats to biologically relevant odors (food and predator odors compared to a control situation). MEMRI revealed that a predator is processed differently from the control situation in the primary olfactory cortex. Fos immunolabeling in the anterior piriform cortex corroborated this result. Altogether, MEMRI and Fos results suggest that olfactory processing may rely on both the intensity of activation and the size of neuronal populations recruited. Finally, MEMRI revealed that the olfactory message, crucial for survival, is asymmetrically processed in the brain. Methodological and scientific advances brought by this thesis will be useful for better understanding brain olfactory processing.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    Incertitude de la borne de Cramér-Rao : conséquences en spectroscopie RMN quantitative

    No full text
    Incertitude de la borne de Cramér-Rao : conséquences en spectroscopie RMN quantitative. 20. GERM Congres

    CEST-MRI to reveal new contrasts: application in preclinical imaging and food science

    No full text
    MRI is one of the most performant non-invasive imaging technique. The images are contrasted thanks to local differences in water properties (T1, T2, ADC,…). One of the main limitation of MRI deals with its lack of sensitivity to image other molecules than water. One solution to circumvent this limitation is based on imaging the chemical exchange between solute (containing exchangeable protons) which is present in a too low concentration to be observable by MRI and the readily imaged water molecules. For that, several images are recorded with a signal saturation at different offsets from the water frequency. The water signal intensity is measured in function of the offset in a so-called z-spectrum. When exchangeable protons are irradiated, the water attenuation is more important than expected. The quantification of this attenuation provides an indirect way for imaging this low-concentration population. This approach has been implemented on our high-field MR imagers and is currently used in two projects. The first one consists in evaluating CEST imaging to characterize simultaneously both hypoxia and proteoglycan concentration in an animal model of chondrosarcoma (i.e., cartilage cancer). The hypoxia (pH) is imaged from the CEST effect of the amide functions (~3-4 ppm from the water frequency) while the proteoglycan concentration is deduced from the chemical exchange between hydroxyl groups and water (~1 ppm from the water resonance). As both properties are important in this pathology, CEST-MRI presents the advantage to assess both of them within a single acquisition. The second project focusses on imaging the gluten network formation in baking products. Indeed, the gluten network is made thanks to the formation of disulfide bonds from thiol moieties. First, we demonstrated that it is possible to monitor chemical exchange between thiol function and water. Applying CEST-MRI to baking products requires taking into account the magnetization transfer effects, which are predominant in the z-spectrum. We will present the progress of both projects

    A robust and prior knowledge independent method to interpret non-negative least squares (NNLS) T2 relaxation results

    No full text
    The fitting of an NMR signal decay in a weighted sum of exponentials is an ill-posed problem, i.e. different sets of relaxation times and amplitudes will lead to the same least-squares distance between the model and the experimental noisy data. To analyze such data, the classical pipe consists in performing a non-negative least squares (NNLS) algorithm combined with a regularization to smooth the T2 distribution. However, a critical step of this approach deals with the choice of the operator and then of the corresponding regularization parameter which significantly affects the T2 distribution. These parameters are usually chosen based on the operator experience as well as prior knowledge on the sample. In this work, we propose to analyze NNLS results without regularization to circumvent these drawbacks. Our approach is based on the analysis of NNLS outputs by cumulative distribution functions (cdf) and not by probability density functions (pdf) as it is usually done. This concept is validated in different simulations for which the true T2 distributions are built from discrete to continuous functions. Simulation results showed that the T2 amplitude measured at a plateau of the cdf is unbiased and (almost) independent of both the decomposition basis and the signal-to-noise ratio. This observation allows to quantitatively interpret the NNLS inversions, especially when the true distribution is continuous. We suggest that NNLS by itself suffices in many situations, provided that cdf plateau can be discernable. The degrees of freedom to adjust in the method are then limited to the decomposition basis. To exemplify, this pragmatic and fruitful approach is applied on real NMR data obtained by spectroscopy and imaging
    corecore