81 research outputs found

    Adolescents’ Developing Sensitivity to Orthographic and Semantic Cues During Visual Search for Words

    Get PDF
    Two eye-tracking experiments were conducted to assess the influence of words either looking like the target word (orthographic distractors) or semantically related to the target word (semantic distractors) on visual search for words within lists by adolescents of 11, 13, and 15 years of age. In Experiment 1 (literal search task), participants saw the target word before the search (e.g., “raven”), whereas in Experiment 2 (categorical task) the target word was only defined by its semantic category (e.g., “bird”). In both experiments, participants’ search times decreased from fifth to ninth grade, both because older adolescents gazed less often at non-target words during the search and because they could reject non-target words more quickly once they were fixated. Progress in visual search efficiency was associated with a large increase in word identification skills, which were a strong determinant of average gaze durations and search times for the categorical task, but much less for the literal task. In the literal task, the presence of orthographic or semantic distractors in the list increased search times for all age groups. In the categorical task, the impact of semantic distractor words was stronger than in the literal task because participants needed to gaze at the semantic distractors longer than at the other words before rejecting them. Altogether, the data support the assumption that the progressive automation of word decoding up until the age of 12 and the better quality of older adolescents’ lexical representations facilitate a flexible use of both the perceptual and semantic features of words for top-down guidance within the displays. In particular, older adolescents were better prepared to aim at or reject words without gazing at them directly. Finally, the overall similar progression of the maturation of single word visual search processes and that of more real-life information search within complex verbal documents suggests that the young adolescents’ difficulties in searching the Web effectively could be due to their insufficiently developed lexical representations and word decoding abilities

    ERS: A simple scoring system to predict early recurrence after surgical resection for hepatocellular carcinoma.

    Full text link
    peer reviewed[en] BACKGROUND: Surgical resection (SR) is a potentially curative treatment of hepatocellular carcinoma (HCC) hampered by high rates of recurrence. New drugs are tested in the adjuvant setting, but standardised risk stratification tools of HCC recurrence are lacking. OBJECTIVES: To develop and validate a simple scoring system to predict 2-year recurrence after SR for HCC. METHODS: 2359 treatment-naïve patients who underwent SR for HCC in 17 centres in Europe and Asia between 2004 and 2017 were divided into a development (DS; n = 1558) and validation set (VS; n = 801) by random sampling of participating centres. The Early Recurrence Score (ERS) was generated using variables associated with 2-year recurrence in the DS and validated in the VS. RESULTS: Variables associated with 2-year recurrence in the DS were (with associated points) alpha-fetoprotein (100: 3), size of largest nodule (≥40 mm: 1), multifocality (yes: 2), satellite nodules (yes: 2), vascular invasion (yes: 1) and surgical margin (positive R1: 2). The sum of points provided a score ranging from 0 to 11, allowing stratification into four levels of 2-year recurrence risk (Wolbers' C-indices 66.8% DS and 68.4% VS), with excellent calibration according to risk categories. Wolber's and Harrell's C-indices apparent values were systematically higher for ERS when compared to Early Recurrence After Surgery for Liver tumour post-operative model to predict time to early recurrence or recurrence-free survival. CONCLUSIONS: ERS is a user-friendly staging system identifying four levels of early recurrence risk after SR and a robust tool to design personalised surveillance strategies and adjuvant therapy trials

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    Effets du bruit dans le système nerveux central (du neurone au réseau de neurones)

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Children’s Visual Scanning of Textual Documents: Effects of Document Organization, Search Goals, and Metatextual Knowledge

    No full text
    International audienceThis study examines children’s strategies when scanning a document to answer a specific question. More specifically, we wanted to know whether they make use of organizers (i.e., headings) when searching and whether strategic search is related to their knowledge of reading strategies. Twenty-six French fifth graders were asked to search single-page documents presented on the screen of an eye tracker in order to respond to questions requiring the location of information in either a single paragraph (Location questions) or multiple paragraphs (Comparison questions). Location questions were easier and faster to answer than Comparison questions. The presence of headers led to more selective reading strategies but did not significantly speed up the search. Strong individual differences were observed in children’s scanning strategies: Some systematically fixated headers, whereas others did not. These differences were not significantly related to the participants’ decoding or comprehension skills but rather to their knowledge of reading strategies
    • …
    corecore