117 research outputs found

    Structural changes in lipid-free humic acids during composting of sewage sludge

    Get PDF
    Structural changes in humic acids (HAs), extracted after lipid removal from sewage sludge during composting, were investigated using various chemical methods (elemental analysis, Fourier transform infrared spectroscopy and 13C-nuclear magnetic resonance (NMR) spectroscopy). Compared to non-purified HAs, lipid-free HAs (LFHAs) exhibit higher C and N contents and high absorbance around 1652, 1540 and 1230 cm1, which indicates the intensity of the etherified aromatic structures and nitrogencontaining components. Less absorbance around 2920, 1600, 1414 and 1100 cm1 could be assigned to their low level of aliphatic compounds, mainly those with a carboxyl group. According to 13C-NMR spectroscopy, almost 45% of aliphatic structures are removed by lipid extraction and these correspond mainly to long-chain fatty acids. During composting, significant decomposition of non-substituted alkyl structures and N-containing components occurred, increasing the relative intensity of etherified aromatic structures

    Reducing Ammonia Losses By Adding FeCI3 During Composting Of Sewage Sludge

    Get PDF
    The release of ammonia nitrogen during composting of sewage sludge mixed with a lignocellulosic bulking agent leads to a reduction in the agronomic value of the final compost and to harmful effects on the environment. We propose adding a cheap salt FeCl3 which can be used without special precaution to reduce ammonia losses by decreasing pH conditions. An in-vessel co-composting experiment was conducted in a large reactor (100 L) in which FeCl3 was added to sludge mixed with a bulking agent (pine shavings and sawdust) and compared with a control mixture without FeCl3. Temperature, oxygen consumption and pH were monitored throughout the composting of both mixtures. The final balance of organic matter, organic and inorganic nitrogen permitted to conclude that the addition of FeCl3 reduced nitrogen loss (by a factor of 2.4 in relation to the control) and increased mineralisation of the organic nitrogen by 1.6

    Pédogenèses quaternaires dans la région toulousaine. Les loess et leurs colluvions comme marqueur chronologique

    Get PDF
    L'étude des loess wurmiens et de leur altération a permis aux auteurs de préciser les mécanismes de la pédogénèse sur des matériaux éoliens récents. Elle contnbue à mieux situer l'évolution des sols de la région dans l'histoire du Quaternaire récent. L'étude de la faune malacologique est venue confirmer les conditions de mise en place des loess et des colluvions

    Chemical and spectroscopic analysis of olive mill waste water during a biological treatment

    Get PDF
    The treatment of olive mill waste water was studied on the laboratory scale. Physico–chemical analyses showed the final products had a mean pH of 5.4 without neutralisation and 5.7 when lime was added to the process. Raising the pH by adding lime had a positive outcome on the degradation of phenols, whose levels were reduced by over 76%. The lime also changed the structure of the organic matter, as seen in the infra-red spectra. Combining the FT-IR and 13C NMR data showed that with addition of lime, the density of aliphatic groups decreased to the benefit of aromatic groups, indicating that polymerisation of the organic matter occurred during the bioprocess. Under our experimental conditions, the biotransformation of olive mill waste water appears to favour the stabilisation of the organic matter through mechanisms analogous to those that lead to the formation of humus in the soil

    Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis

    Get PDF
    The composting process involves a succession of different communities of microorganisms that decompose the initial material, transforming it into a stable final product. In thiswork, the levels of phospholipid fatty acid (PLFA), neutral lipid fatty acid (NLFA) and sterolwere monitored in compost versus time, as indicators of the activity of various microorganisms (Gram-positive or Gram-negative bacteria, fungi, etc.). During composting, the PLFA and NLFA from Gram-negative bacteria and eukaryotes (2-OH 10; 3-OH 12; 2-OH 14; 13:0; 16:1; 18:1 trans) aswell as some sterols of plant origin (e.g. monostearin sterols) decreased until the end of composting. In contrast, the branched fatty acids with iso- and anteiso-forms (i-15:0; a-15:0; i-16; i-17) increased mainly in the thermophilic phase, but decreased right after. The PLFA 18:2 (6;9), which is used as an index of the occurrence of some fungi, rose strongly at the beginning of composting, but fell after peak heating. In contrast, the other main sterol indicative of fungi, ergosterol, decreased at the beginning of the thermophilic phase, but increased strongly by the end of composting. Accordingly, cluster and PCA analysis separated the PLFA of Gram-negative bacteria and eukaryotic cells from those of Gram-positive bacteria and long-chain fatty acids. The fungal PLFA considered, 18:2 (9, 12), was clustered more closely to iso- and anteiso-branched PLFAs. Stigmasterol, squalene and cholesterol occurred in the lower right part of the loading plot and were clustered more closely to iso-, anteiso-branched PLFAs and 18:2w6,9 suggesting their relationship to microbial activities. We also observed the tendency of resistance of fatty acid PLFAs and NLFAs of long chain (19:0 (cis-9); 20:0) and some recalcitrant sterols, e.g. sitosterol, at the end of composting. The presence of high levels of the latter in the final stage indicates their contribution to the structural stability of organic matter fractions. These recalcitrant components were more clustered and occurred in the lower right part of the loading plot

    13C NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content

    Get PDF
    Olive mill wastewater was treated by an aerobic bio-process at different values of pH (with or without addition of lime), for 45 days on a laboratory scale, to evaluate the reduction of the organic load. The lipid content showed an appreciable change in relation to the applied treatment both for total lipids and for the different fractions (neutral lipids, monoglycerides and phospholipids). 13C NMR spectroscopy was performed on initial and final samples both raw and after lipid extraction. The main spectral differences were observed in the C-alkyl region (0–50 ppm), in the C O-alkyl/N-alkyl region (50–110 ppm), and in the C-carboxylic (160–200 ppm) region, providing information on the alterations occurring in the different biochemical entities composing this complex biomatrix (e.g. lipids and carbohydrates) according to the treatment

    Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated plant wastewaters by solid-phase extraction coupled with ESI HPLC–MS

    Get PDF
    Nitration reactions of aromatic compounds are commonly involved in different industrial processes for pharmaceutical, pesticide or military uses. For many years, most of the manufacturing sites used lagooning systems to treat their process effluents. In view of a photocatalytic degradation assay, the wastewater of a lagoon was investigated by using HPLC coupled with mass spectrometry. The wastewater was highly concentrated in RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and two herbicides Dinoterb (2-tert-butyl-4,6-dinitrophenol) and Dinoseb (2-sec-butyl-4,6-dinitrophenol). First of all, an analytical method using solid-phase extraction (SPE) combined with HPLC ESI MS/MS was put in work for identification and titration of RDX, HMX and the two dinitrophenols in a complex natural matrix. Then, the UV/TiO2 treatment was investigated for pollutants removal. Dinitrophenolic compoundswere significantly degraded after a 8-h-exposition of the wastewater/TiO2 suspension, whereas RDX and HMX were poorly affected

    Microbial population changes during bioremediation of nitroaromatic - and nitramine-contaminated lagoon

    Get PDF
    Nitration reactions of aromatic compounds are commonly involved in military industrial processes. Military industries treated their process effluents using lagoon systems for many years. In this study, the sediment of a lagoon was investigated from a bioremediation objective. The physico-chemical characterization of the sediments showed the organic nature of the sediment (25.4% carbon with a C:N ¼ 3) highly concentrated in RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) as well as two herbicides Dinoterb (2-tert-butyl-4,6-dinitrophenol) and Dinoseb (2-sec-butyl-4,6-dinitrophenol). Analysis of the 16S rRNA gene clone library revealed the presence of three dominant families, Geobacteriacea, Clostridiaceae and Pseudomonaceae. A bioremediation assay was carried out in anaerobic conditions in order to degrade organic compounds. In these conditions, 100% of Dinoterb and Dinoseb were degraded after 75 days of culture, while RDX and HMX were not consumed. The 16S rRNA gene clone library analysis of this incubation showed a drastic reduction of the final biodiversity composed by clones related to Enterobacteriaceae (especially Leclercia adecarboxylata) and Pseudomonaceae family. It was then suggested that Enterobacteriaceae and Pseudomonaceae were potentially involved in biodegradation of these two herbicides. To confirm this hypothesis, cultures were carried out with isolated species of Pseudomonas putida, Pseudomonas citronellolis and L. adecarboxylata in the presence of Dinoterb. The data confirmed that in the presence of glucose, these microorganisms are able to consume Dinoterb

    Photochemical UV/TiO2 treatment of olive mill wastewater (OMW)

    Get PDF
    Olive mill wastewater (OMW) was treated by photocatalysis using TiO2 under UV irradiation on the laboratory scale. The chemical oxygen demand, the coloration at 330 nm, and the level of phenols all showed decreases which, after a 24-h treatment, reached 22%, 57% and 94%, respectively. The differences between these three values indicate the persistence of colourless, non-phenolic compounds. Application of the novel Fictitious Atomic-Group Separation method showed an increase in carbon oxidation state and confirmed that the attack primarily concerns, aromatic moieties. A fine spectroscopic study revealed the occurrence of three successive phases during the degradation process, thought to correspond to three different categories of molecules in the OMW and the presence of pectin compounds
    corecore