9 research outputs found

    How to prove the existence of metabolons?

    Get PDF

    Assembly of dynamic P450-mediated metabolons - order versus chaos

    Get PDF
    PURPOSE OF REVIEW: We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from Sorghum bicolor as a case study. RECENT FINDINGS: Sessile plants control their metabolism to prioritize their resources between growth and development, or defense. This requires fine-tuned complex dynamic regulation of the metabolic networks involved. Within the recent years, numerous studies point to the formation of dynamic metabolons playing a major role in controlling the metabolic fluxes within such networks. SUMMARY: We propose that P450s and their partners interact and associate dynamically with POR, which acts as a charging station possibly in concert with Cytb5. Solvent environment, lipid composition, and non-catalytic proteins guide metabolon formation and thereby activity, which have important implications for synthetic biology approaches aiming to produce high-value specialized metabolites in heterologous hosts

    最近の經濟學界

    Get PDF
    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology

    Cytochrome P450-mediated metabolic engineering:current progress and future challenges

    Get PDF
    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes

    An independent evolutionary origin for insect deterrent cucurbitacins in <i>Iberis amara</i>

    Get PDF
    Pieris rapae and Phyllotreta nemorum are Brassicaceae specialists, but do not feed on Iberis amara spp. that contain cucurbitacins. The cucurbitacins are highly oxygenated triterpenoid, occurring widespread in cucurbitaceous species and in a few other plant families. Using de novo assembled transcriptomics from I. amara, gene co-expression analysis and comparative genomics, we unraveled the evolutionary origin of the insect deterrent cucurbitacins in I. amara. Phylogenetic analysis of five oxidosqualene cyclases and heterologous expression allowed us to identify the first committed enzyme in cucurbitacin biosynthesis in I. amara, cucurbitadienol synthase (IaCPQ). In addition, two species-specific cytochrome P450s (CYP708A16 and CYP708A15) were identified that catalyze the unique C16 and C22 hydroxylation of the cucurbitadienol backbone, enzymatic steps that have not been reported before. Furthermore, the draft genome assembly of I. amara showed that the IaCPQ was localized to the same scaffold together with CYP708A15 but spanning over 100 kb, this contrasts with the highly organized cucurbitacin gene cluster in the cucurbits. These results reveal that cucurbitacin biosynthesis has evolved convergently via different biosynthetic routes in different families rather than through divergence from an ancestral pathway. This study thus provides new insight into the mechanism of recurrent evolution and diversification of a plant defensive chemical

    Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum

    Get PDF
    Metabolite channeling by a dynamic metabolon The specialized metabolite dhurrin breaks down into cyanide when plant cell walls have been chewed, deterring insect pests. Laursen et al. found that the enzymes that synthesize dhurrin in sorghum assemble as a metabolon in lipid membranes (see the Perspective by Dsatmaichi and Facchini). The dynamic nature of metabolon assembly and disassembly provides dhurrin on an as-needed basis. Membrane-anchored cytochrome P450s cooperated with a soluble glucosyltransferase to channel intermediates toward efficient dhurrin production. Science , this issue p. 890 ; see also p. 829 </jats:p
    corecore