34 research outputs found

    Mind over chatter: plastic up-regulation of the fMRI alertness network by EEG neurofeedback

    Get PDF
    EEG neurofeedback (NFB) is a brain-computer interface (BCI) approach used to shape brain oscillations by means of real-time feedback from the electroencephalogram (EEG), which is known to reflect neural activity across cortical networks. Although NFB is being evaluated as a novel tool for treating brain disorders, evidence is scarce on the mechanism of its impact on brain function. In this study with 34 healthy participants, we examined whether, during the performance of an attentional auditory oddball task, the functional connectivity strength of distinct fMRI networks would be plastically altered after a 30-min NFB session of alpha-band reduction (n=17) versus a sham-feedback condition (n=17). Our results reveal that compared to sham, NFB induced a specific increase of functional connectivity within the alertness/salience network (dorsal anterior and mid cingulate), which was detectable 30 minutes after termination of training. Crucially, these effects were significantly correlated with reduced mind-wandering 'on-task' and were coupled to NFB-mediated resting state reductions in the alpha-band (8-12 Hz). No such relationships were evident for the sham condition. Although group default-mode network (DMN) connectivity was not significantly altered following NFB, we observed a positive association between modulations of resting alpha amplitude and precuneal connectivity, both correlating positively with frequency of mind-wandering. Our findings demonstrate a temporally direct, plastic impact of NFB on large-scale brain functional networks, and provide promising neurobehavioral evidence supporting its use as a noninvasive tool to modulate brain function in health and disease

    Unique functional abnormalities in youth with combined marijuana use and depression: an fMRI study

    Get PDF
    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD?+?MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group x music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group x music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform clinical recommendations for youth with MDD

    Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models

    Get PDF
    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls

    Blood-brain barrier permeability in survivors of immune-mediated thrombotic thrombocytopenic purpura: A pilot study

    Get PDF
    Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening disorder of systemic microthrombosis and organ ischemia. The etiology of chronic cerebrovascular outcomes in iTTP survivors is largely unknown. In this pilot study, we measured blood-brain barrier (BBB) permeability in patients with iTTP at the start of remission and 6 months later. This prospective pilot study included 7 adult patients with incident iTTP. Eligibility criteria included ADAMTS13 activity, 10% and detectable inhibitor at diagnosis. Patients were recruited from London Health Sciences Centre in Canada (2017-2019) within 3 days of hospital admission and followed for 6 months after remission (defined as normalization of platelet count and lactate dehydrogenase with no clinical signs or symptoms of microvascular injury for more than 30 days after the last plasma exchange). All patients had cerebral computed tomography perfusion scans with BBB permeability surface product measurements. Patients (5 women, 2 men) had a mean age of 48 years (range, 21-77 years). At diagnosis, patients had a mean platelet count of 22 (standard deviation [SD], 25) 3 109/L. At the start of remission, mean BBB permeability surface product was 0.91 (0.30) mL/min/100 g. Six months later, the mean permeability surface product was 0.56 (0.22) mL/min/100 g, with a mean difference of 20.312 mL/min/100 g (95% confidence interval: 20.4729 to 20.1510; P 5.0032). In this pilot study of patients with iTTP, pathologically increased BBB permeability was evident, and although there was some improvement, this persisted 6 months after remission. Future work will explore the chronicity of these findings and their clinical implications

    Interfacial Tension Driven Open Droplet Microfluidics

    No full text
    Abstract Droplet microfluidics enables compartmentalized reactions in small scales and is utilized for a variety of applications across chemical analysis, material science, and biology. While droplet microfluidics is a successful technology, barriers include high “activation energy” to develop custom applications and complex peripheral equipment. These barriers limit the adoption of droplet microfluidics in labs or prototyping environments. This work demonstrates for the first time an open channel droplet microfluidic system that autonomously generates droplets at low capillary numbers. Hundreds of droplets are produced in a run using only an open channel, pipettes, and a commercially available carrier fluid. Conceptual applications that showcase the process of droplet generation, splitting, transport, incubation, mixing, and sorting are demonstrated. The open nature of the device enables the use of physical tools such as tweezers and styli to directly access the system; with this, a new method of droplet sorting and transfer unique to open systems is demonstrated. This platform offers enhanced usability, direct access to the droplet contents, easy manufacturability, compact footprint, and high customizability. This design is a first step in exploring the space of power‐free open droplet microfluidic systems and provides design rules for similar channel designs

    Effect of direct eye contact in women with PTSD related to interpersonal trauma: Psychophysiological interaction analysis of connectivity of an innate alarm system

    No full text
    Steuwe C, Daniels JK, Frewen PA, Densmore M, Theberge J, Lanius RA. Effect of direct eye contact in women with PTSD related to interpersonal trauma: Psychophysiological interaction analysis of connectivity of an innate alarm system. Psychiatry Research: Neuroimaging. 2015;232(2):162-167.In healthy individuals, direct eye contact is thought to modulate a cortical route eliciting social cognitive processes via activation of a fast subcortical pathway. This study aimed to examine functional brain connectivity during direct eye contact in women with posttraumatic stress disorder (PTSD) related to childhood abuse as compared with healthy controls. We conducted psychophysiological interaction (PPI) analyses in Statistical Parametric Mapping-8 (SPM8) using the superior colliculus (SC) and locus coeruleus (LC) as seed regions while 16 healthy subjects and 16 patients with a primary diagnosis of PTSD related to childhood maltreatment viewed a functional magnetic resonance imaging (fMRI) paradigm involving direct (D) versus averted (A) gaze (happy, sad, neutral). The PTSD group showed a significantly enhanced connectivity between the SC and the anterior cingulate, and between the LC and the thalamus, caudate, putamen, insula, cingulate gyrus, and amygdala, as compared with healthy individuals. Symptom severity scores on the Clinician-Administered PTSD Scale (CAPS) showed significant positive correlations with superior colliculus connectivity with the perigenual and posterior cingulate, insula, and sublenticular extended amygdala. Functional connectivity data suggest increased recruitment of brain regions involved in emotion processing during direct gaze in PTSD in association with the fast subcortical pathway. The interpretation of eye contact as a signal of threat may require more emotion regulatory capacities in patients with PTSD

    Higher order thalamic nuclei resting network connectivity in early schizophrenia and major depressive disorder

    No full text
    The pulvinar and the mediodorsal (MDN) nuclei of the thalamus are higher order nuclei which have been implicated in directed effort and corollary discharge systems. We used seed-based resting fMRI to examine functional connectivity to bilateral pulvinar and MDN in 24 schizophrenic patients (SZ), 24 major depressive disorder patients (MDD), and 24 age-matched healthy controls. SZ had less connectivity than controls between the left pulvinar and precuneus, left ventral-lateral prefrontal cortex (vlPFC), and superior and medial-frontal regions, between the right pulvinar and right frontal pole, and greater connectivity between the right MDN and left dorsolateral prefrontal cortex (dlPFC). SZ had less connectivity than MDD between the left pulvinar and ventral anterior cingulate (vACC), left vlPFC, anterior insula, posterior cingulate cortex (PCC), and right hippocampus, between the right pulvinar and right PCC, and between the right MDN and right dorsal anterior cingulate (dACC). This is the first study to measure the functional connectivity to the higher order nuclei of the thalamus in both SZ and MDD. We observed less connectivity in SZ than MDD between pulvinar and emotional encoding regions, a directed effort region, and a region involved in representation and salience, and between MDN and a directed effort region

    Droplet Behavior in Open Biphasic Microfluidics

    No full text
    Capillary open microsystems are attractive and increasingly used in biotechnology, biology, and diagnostics as they allow simple and reliable control of fluid flows. In contrast to closed microfluidic systems, however, two-phase capillary flows in open microfluidics have remained largely unexplored. In this work, we present the theoretical basis and experimental demonstration of a spontaneous capillary flow (SCF) of two-phase systems in open microchannels. Analytical results show that an immiscible plug placed in an open channel can never stop the SCF of a fluid in a uniform cross-section microchannel. Numerical investigations of the morphologies of immiscible plugs in a capillary flow reveal three different possible behaviors. Finally, the predicted behaviors of the plugs are demonstrated experimentally, revealing an effect of inertial forces on the plug behavior. A model for predicting plug behaviors in SCFs is proposed, enabling the design of open microfluidic droplet-based systems that are simple to fabricate and use. The open-channel approach to droplet-based microfluidics has the potential to enable applications in which each drop can be accessed at any time and any location with simple pipettes or other fluid dispensing systems

    Droplet Behavior in Open Biphasic Microfluidics

    No full text
    Capillary open microsystems are attractive and increasingly used in biotechnology, biology, and diagnostics as they allow simple and reliable control of fluid flows. In contrast to closed microfluidic systems, however, two-phase capillary flows in open microfluidics have remained largely unexplored. In this work, we present the theoretical basis and experimental demonstration of a spontaneous capillary flow (SCF) of two-phase systems in open microchannels. Analytical results show that an immiscible plug placed in an open channel can never stop the SCF of a fluid in a uniform cross-section microchannel. Numerical investigations of the morphologies of immiscible plugs in a capillary flow reveal three different possible behaviors. Finally, the predicted behaviors of the plugs are demonstrated experimentally, revealing an effect of inertial forces on the plug behavior. A model for predicting plug behaviors in SCFs is proposed, enabling the design of open microfluidic droplet-based systems that are simple to fabricate and use. The open-channel approach to droplet-based microfluidics has the potential to enable applications in which each drop can be accessed at any time and any location with simple pipettes or other fluid dispensing systems
    corecore