128 research outputs found

    Status of the Stony Brook Superconducting Heavy-Ion Linac

    Get PDF
    The present status of the Stony Brook Superconducting Heavy-Ion Linear Accelerator is described, with emphasis on recent operational results with a prototype unit of the accelerator. The basic LINAC elements are independently-phased lead-plated copper split-loop resonators operating at 151.7 MHz and optimized for velocities of either ß=v/c= 0.055 or ß=0.10. Resonators are grouped in units of either 4 low-ß or 3 high-ß resonators in compact cryostat modules separated by room-temperature quadrupole-doublet lenses. The LINAC consisting of 4 low-ß and 7 high-ß modules injected with heavy ions of mass A≃16-100 from the Stony Brook EN tandem will produce an additional energy gain of ~18 MeV per unit charge with a total heat dissipation at 4.5K of <300 Watts. In recent tests with low-ß prototype units, individual resonators were operated continuously at accelerating gradients in excess of 3.5 MV/m, and were phase and amplitude stabilized at 3.0 MV/ m using 175 Watts of RF power. Helium-temperature dissipation at 3.0 MV/m is ~8 Watts after helium-gas conditioning. The prototype low-ß module was used to accelerate a 30 Mev ^(16)O^(5+) beam to ~35 MeV

    CyProQuant-PCR: a real time RT-PCR technique for profiling human cytokines, based on external RNA standards, readily automatable for clinical use

    Get PDF
    BACKGROUND: Real-time PCR is becoming a common tool for detecting and quantifying expression profiling of selected genes. Cytokines mRNA quantification is widely used in immunological research to dissect the early steps of immune responses or pathophysiological pathways. It is also growing to be of clinical relevancy to immuno-monitoring and evaluation of the disease status of patients. The techniques currently used for "absolute quantification" of cytokine mRNA are based on a DNA standard curve and do not take into account the critical impact of RT efficiency. RESULTS: To overcome this pitfall, we designed a strategy using external RNA as standard in the RT-PCR. Use of synthetic RNA standards, by comparison with the corresponding DNA standard, showed significant variations in the yield of retro-transcription depending the target amplified and the experiment. We then developed primers to be used under one single experimental condition for the specific amplification of human IL-1β, IL-4, IL-10, IL-12p40, IL-13, IL-15, IL-18, IFN-γ, MIF, TGF-β1 and TNF-α mRNA. We showed that the beta-2 microglobulin (β2-MG) gene was suitable for data normalisation since the level of β2-MG transcripts in naïve PBMC varied less than 5 times between individuals and was not affected by LPS or PHA stimulation. The technique, we named CyProQuant-PCR (Cytokine Profiling Quantitative PCR) was validated using a kinetic measurement of cytokine transcripts under in vitro stimulation of human PBMC by lipopolysaccharide (LPS) or Staphylococcus aureus strain Cowan (SAC). Results obtained show that CyProQuant-PCR is powerful enough to precociously detect slight cytokine induction. Finally, having demonstrated the reproducibility of the method, it was applied to malaria patients and asymptomatic controls for the quantification of TGF-β1 transcripts and showed an increased capacity of cells from malaria patients to accumulate TGF-β1 mRNA in response to LPS. CONCLUSION: The real-time RT-PCR technique based on a RNA standard curve, CyProQuant-PCR, outlined here, allows for a genuine absolute quantification and a simultaneous analysis of a large panel of human cytokine mRNA. It represents a potent and attractive tool for immunomonitoring, lending itself readily to automation and with a high throughput. This opens the possibility of an easy and reliable cytokine profiling for clinical applications

    Chronic infection during placental malaria is associated with up-regulation of cycloxygenase-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Placental malaria (PM) is associated with poor foetal development, but the pathophysiological processes involved are poorly understood. Cyclooxygenase (COX) and lipoxygenase (LOX) which convert fatty acids to prostaglandins and leukotrienes, play important roles in pregnancy and foetal development. COX-2, currently targeted by specific drugs, plays a dual role as it associates with both pre-eclampsia pathology and recovery during infection. The role of COX during PM was questioned by quantifying at delivery COX-1, COX-2, 15-LOX, and IL-10 expression in two groups of malaria infected and uninfected placenta.</p> <p>Methods</p> <p>Placental biopsies were collected at delivery for mRNA isolation and quantification, using real time PCR.</p> <p>Results</p> <p>COX-2 and IL-10 mRNAs increased mainly during chronic infections (nine- and five-times, respectively), whereas COX-1 transcripts remained constant. COX-2 over-expression was associated with a higher birth weight of the baby, but with a lower rate of haemoglobin of the mother. It was associated with a macrophage infiltration of the placenta and with a low haemozoin infiltration. In the opposite way, placental infection was associated with lower expression of 15-LOX mRNA. A high degree of haemozoin deposition correlates with low birth weight and decreased expression of COX-2.</p> <p>Conclusion</p> <p>These data provide evidence that COX-2 and IL-10 are highly induced during chronic infection of the placenta, but were not associated with preterm delivery or low birth weight. The data support the involvement of COX-2 in the recovery phase of the placental infection.</p

    Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Translation of the genome sequence of <it>Plasmodium sp</it>. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of <it>P. falciparum </it>parasites exposed to antimalarial drugs.</p> <p>Results</p> <p>The rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole.</p> <p>Conclusion</p> <p>The high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.</p

    Invasion of Africa by a single pfcrt allele of South East Asian type

    Get PDF
    BACKGROUND: Because of its dramatic public health impact, Plasmodium falciparum resistance to chloroquine (CQ) has been documented early on. Chloroquine-resistance (CQR) emerged in the late 1950's independently in South East Asia and South America and progressively spread over all malaria areas. CQR was reported in East Africa in the 1970's, and has since invaded the African continent. Many questions remain about the actual selection and spreading process of CQR parasites, and about the evolution of the ancestral mutant gene(s) during spreading. METHODS: Eleven clinical isolates of P. falciparum from Cambodia and 238 from Africa (Senegal, Ivory Coast, Bukina Faso, Mali, Guinea, Togo, Benin, Niger, Congo, Madagascar, Comoros Islands, Tanzania, Kenya, Mozambique, Cameroun, Gabon) were collected during active case detection surveys carried out between 1996 and 2001. Parasite DNA was extracted from frozen blood aliquots and amplification of the gene pfcrt exon 2 (codon 72–76), exon 4 and intron 4 (codon 220 and microsatellite marker) were performed. All fragments were sequenced. RESULTS: 124 isolates with a sensitive (c76/c220:CVMNK/A) haplotype and 125 isolates with a resistant c76/c220:CVIET/S haplotype were found. The microsatellite showed 17 different types in the isolates carrying the c76/c220:CVMNK/A haplotype while all 125 isolates with a CVIET/S haplotype but two had a single microsatellite type, namely (TAAA)3(TA)15, whatever the location or time of collection. CONCLUSION: Those results are consistent with the migration of a single ancestral pfcrt CQR allele from Asia to Africa. This is related to the importance of PFCRT in the fitness of P. falciparum point out this protein as a potential target for developments of new antimalarial drugs

    The antigen presenting potential of Vγ9Vδ2 T-cells during Plasmodium falciparum blood-stage infection.

    Get PDF
    During Plasmodium falciparum infections, erythrocyte-stage parasites inhibit dendritic cell maturation and function; compromising development of effective anti-malarial adaptive immunity. Human Vγ9Vδ2 T-cells can act in vitro as APCs and induce αβ T-cell activation. However, the relevance of this activity in pathophysiological contexts in vivo has remained elusive. Since Vγ9Vδ2 T-cells are activated during the early immune response against P.falciparum infection, we investigated whether they could contribute to the instruction of adaptive immune responses toward malaria parasites. In P.falciparum-infected patients,Vγ9Vδ2 T-cells presented an increased surface expression of APC-associated markers HLA-DR and CD86. In response to infected red blood cells in vitro, Vγ9Vδ2 T-cells readily up-regulated surface expression of HLA-DR, HLA-ABC, CD40, CD80, CD83 and CD86, induced naive αβ T-cell responses, and cross-presented soluble prototypical protein to antigen-specific CD8+ T-cells. Our findings indicate that P. falciparum parasites induce genuine APC properties in Vγ9Vδ2 T-cells and qualify this subset as an alternative professional APC in malaria patients, which could be harnessed for therapeutic interventions and vaccine design

    Status of the Stony Brook Superconducting Heavy-Ion Linac

    Full text link

    Rapid Dissemination of Plasmodium falciparum Drug Resistance Despite Strictly Controlled Antimalarial Use

    Get PDF
    BACKGROUND: Inadequate treatment practices with antimalarials are considered major contributors to Plasmodium falciparum resistance to chloroquine, pyrimethamine and sulfadoxine. The longitudinal survey conducted in Dielmo, a rural Senegalese community, offers a unique frame to explore the impact of strictly controlled and quantified antimalarial use for diagnosed malaria on drug resistance. METHODOLOGY/PRINCIPAL FINDINGS: We conducted on a yearly basis a retrospective survey over a ten-year period that included two successive treatment policies, namely quinine during 1990–1994, and chloroquine (CQ) and sulfadoxine/pyrimethamine (SP) as first and second line treatments, respectively, during 1995–1999. Molecular beacon-based genotyping, gene sequencing and microsatellite analysis showed a low prevalence of Pfcrt and Pfdhfr-ts resistance alleles of Southeast Asian origin by the end of 1994 and their effective dissemination within one year of CQ and SP implementation. The Pfcrt resistant allele rose from 9% to 46% prevalence during the first year of CQ reintroduction, i.e., after a mean of 1.66 CQ treatment courses/person/year. The Pfdhfr-ts triple mutant rose from 0% to 20% by end 1996, after a mean of 0.35 SP treatment courses/person in a 16-month period. Both resistance alleles were observed at a younger age than all other alleles. Their spreading was associated with enhanced in vitro resistance and rapidly translated in an increased incidence of clinical malaria episodes during the early post-treatment period. CONCLUSION/SIGNIFICANCE: In such a highly endemic setting, selection of drug-resistant parasites took a single year after drug implementation, resulting in a rapid progression of the incidence of clinical malaria during the early post-treatment period. Controlled antimalarial use at the community level did not prevent dissemination of resistance haplotypes. This data pleads against reintroduction of CQ in places where resistant allele frequency has dropped to a very low level after CQ use has been discontinued, unless drastic measures are put in place to prevent selection and spreading of mutants during the post-treatment period
    corecore