16 research outputs found

    Induction of Endothelial Cell Apoptosis by Solid Tumor Cells

    Full text link
    The mechanisms by which tumor cells extravasate to form metastasis remain controversial. Previous studies performed in vivo and in vitro demonstrate that the contact between tumor cells and the vascular wall impairs endothelium integrity. Here, we investigated the effect of breast adenocarcinoma MCF-7 cells on the apoptosis of human umbilical vein endothelial cells (HUVEC). TUNEL labeling, nuclear morphology, and DNA electrophoresis indicated that MCF-7 cells induced a two- to fourfold increase in HUVEC apoptosis. Caspase-3 activity was significantly enhanced. Neither normal cells tested (mammary epithelial cells, fibroblasts, leukocytes) nor transformed hematopoietic cells tested (HL60, Jurkat) induced HUVEC apoptosis. On the contrary, cells derived from solid tumors (breast adenocarcinoma, MDA-MB-231 and T47D; fibrosarcoma, HT 1080) had an effect similar to that of MCF-7 cells. The induction of apoptosis requires cell-to-cell contact, since it could not be reproduced by media conditioned by MCF-7 cells cultured alone or cocultured with HUVEC. Our results suggest that cells derived from solid tumors may alter the endothelium integrity by inducing endothelial cell apoptosis. On the contrary, normal or malignant leukocytes appear to extravasate by distinct mechanisms and do not damage the endothelium. Our data may lead to a better understanding of the steps involved in tumor cell extravasation

    Effects of a progestogen on normal human breast epithelial cell apoptosis in vitro and in vivo

    Full text link
    peer reviewedMany investigators have reported cyclic proliferation of normal human breast epithelial cells. A delicate balance between proliferation and apoptosis (programmed cell death) ensures breast homeostasis. Both the follicular and luteal phases of the menstrual cycle are characterized by proliferation, whereas apoptosis occurs only at the end of the latter phase. In this study, we observed that the withdrawal of a synthetic progestin (nomegestrol acetate or NOMAC), but not continuous treatment with it, induced apoptosis of normal human breast epithelial cells in vitro and in women who applied NOMAC gel to their breasts. Furthermore, this apoptotic response was specific to normal breast cells, since withdrawal of NOMAC did not induce apoptosis of tumoral T47D cells in vitro or of fibroadenoma cells in women. These observations open up new perspectives in the prevention of hyperplasia and breast cancer. (C) 2003 Elsevier Science Ltd. All rights reserved
    corecore