763 research outputs found
The Complexity of Simultaneous Geometric Graph Embedding
Given a collection of planar graphs on the same set of
vertices, the simultaneous geometric embedding (with mapping) problem, or
simply -SGE, is to find a set of points in the plane and a bijection
such that the induced straight-line drawings of
under are all plane.
This problem is polynomial-time equivalent to weak rectilinear realizability
of abstract topological graphs, which Kyn\v{c}l (doi:10.1007/s00454-010-9320-x)
proved to be complete for , the existential theory of the
reals. Hence the problem -SGE is polynomial-time equivalent to several other
problems in computational geometry, such as recognizing intersection graphs of
line segments or finding the rectilinear crossing number of a graph.
We give an elementary reduction from the pseudoline stretchability problem to
-SGE, with the property that both numbers and are linear in the
number of pseudolines. This implies not only the -hardness
result, but also a lower bound on the minimum size of a
grid on which any such simultaneous embedding can be drawn. This bound is
tight. Hence there exists such collections of graphs that can be simultaneously
embedded, but every simultaneous drawing requires an exponential number of bits
per coordinates. The best value that can be extracted from Kyn\v{c}l's proof is
only
Information-theoretic lower bounds for quantum sorting
We analyze the quantum query complexity of sorting under partial information.
In this problem, we are given a partially ordered set and are asked to
identify a linear extension of using pairwise comparisons. For the standard
sorting problem, in which is empty, it is known that the quantum query
complexity is not asymptotically smaller than the classical
information-theoretic lower bound. We prove that this holds for a wide class of
partially ordered sets, thereby improving on a result from Yao (STOC'04)
The Clique Problem in Ray Intersection Graphs
Ray intersection graphs are intersection graphs of rays, or halflines, in the
plane. We show that any planar graph has an even subdivision whose complement
is a ray intersection graph. The construction can be done in polynomial time
and implies that finding a maximum clique in a segment intersection graph is
NP-hard. This solves a 21-year old open problem posed by Kratochv\'il and
Ne\v{s}et\v{r}il.Comment: 12 pages, 7 figure
Ramsey-type theorems for lines in 3-space
We prove geometric Ramsey-type statements on collections of lines in 3-space.
These statements give guarantees on the size of a clique or an independent set
in (hyper)graphs induced by incidence relations between lines, points, and
reguli in 3-space. Among other things, we prove that: (1) The intersection
graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}).
(2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all
stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no
6-subset is stabbed by one line. (3) Every set of n lines in general position
in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a
subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus.
The proofs of these statements all follow from geometric incidence bounds --
such as the Guth-Katz bound on point-line incidences in R^3 -- combined with
Tur\'an-type results on independent sets in sparse graphs and hypergraphs.
Although similar Ramsey-type statements can be proved using existing generic
algebraic frameworks, the lower bounds we get are much larger than what can be
obtained with these methods. The proofs directly yield polynomial-time
algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi
A Note on Flips in Diagonal Rectangulations
Rectangulations are partitions of a square into axis-aligned rectangles. A
number of results provide bijections between combinatorial equivalence classes
of rectangulations and families of pattern-avoiding permutations. Other results
deal with local changes involving a single edge of a rectangulation, referred
to as flips, edge rotations, or edge pivoting. Such operations induce a graph
on equivalence classes of rectangulations, related to so-called flip graphs on
triangulations and other families of geometric partitions. In this note, we
consider a family of flip operations on the equivalence classes of diagonal
rectangulations, and their interpretation as transpositions in the associated
Baxter permutations, avoiding the vincular patterns { 3{14}2, 2{41}3 }. This
complements results from Law and Reading (JCTA, 2012) and provides a complete
characterization of flip operations on diagonal rectangulations, in both
geometric and combinatorial terms
Minimum Entropy Orientations
We study graph orientations that minimize the entropy of the in-degree
sequence. The problem of finding such an orientation is an interesting special
case of the minimum entropy set cover problem previously studied by Halperin
and Karp [Theoret. Comput. Sci., 2005] and by the current authors
[Algorithmica, to appear]. We prove that the minimum entropy orientation
problem is NP-hard even if the graph is planar, and that there exists a simple
linear-time algorithm that returns an approximate solution with an additive
error guarantee of 1 bit. This improves on the only previously known algorithm
which has an additive error guarantee of log_2 e bits (approx. 1.4427 bits).Comment: Referees' comments incorporate
Dictionnaire abrégé des philosophes médiévaux, Benoît Patar, Longueuil, Les Presses philosophiques, 2000.
- …
