2,965 research outputs found
Non-Local Control of Single Surface Plasmon
Quantum entanglement is a stunning consequence of the superposition
principle. This universal property of quantum systems has been intensively
explored with photons, atoms, ions and electrons. Collective excitations such
as surface plasmons exhibit quantum behaviors. For the first time, we report an
experimental evidence of non-local control of single plasmon interferences
through entanglement of a single plasmon with a single photon. We achieved
photon-plasmon entanglement by converting one photon of an entangled photon
pair into a surface plasmon. The plasmon is tested onto a plasmonic platform in
a Mach-Zehnder interferometer. A projective measurement on the polarization of
the photon allows the non-local control of the interference state of the
plasmon. Entanglement between particles of various natures paves the way to the
design of hybrid systems in quantum information networks.Comment: 6 pages, 3 figure
Privacy in the Genomic Era
Genome sequencing technology has advanced at a rapid pace and it is now
possible to generate highly-detailed genotypes inexpensively. The collection
and analysis of such data has the potential to support various applications,
including personalized medical services. While the benefits of the genomics
revolution are trumpeted by the biomedical community, the increased
availability of such data has major implications for personal privacy; notably
because the genome has certain essential features, which include (but are not
limited to) (i) an association with traits and certain diseases, (ii)
identification capability (e.g., forensics), and (iii) revelation of family
relationships. Moreover, direct-to-consumer DNA testing increases the
likelihood that genome data will be made available in less regulated
environments, such as the Internet and for-profit companies. The problem of
genome data privacy thus resides at the crossroads of computer science,
medicine, and public policy. While the computer scientists have addressed data
privacy for various data types, there has been less attention dedicated to
genomic data. Thus, the goal of this paper is to provide a systematization of
knowledge for the computer science community. In doing so, we address some of
the (sometimes erroneous) beliefs of this field and we report on a survey we
conducted about genome data privacy with biomedical specialists. Then, after
characterizing the genome privacy problem, we review the state-of-the-art
regarding privacy attacks on genomic data and strategies for mitigating such
attacks, as well as contextualizing these attacks from the perspective of
medicine and public policy. This paper concludes with an enumeration of the
challenges for genome data privacy and presents a framework to systematize the
analysis of threats and the design of countermeasures as the field moves
forward
Exchange interaction effects in the thermodynamic properties of quantum dots
We study electron-electron interaction effects in the thermodynamic
properties of quantum-dot systems. We obtain the direct and exchange
contributions to the specific heat C_v in the self-consistent Hartree-Fock
approximation at finite temperatures. An exchange-induced phase transition is
observed and the transition temperature is shown to be inversely proportional
to the size of the system. The exchange contribution to C_v dominates over the
direct and kinetic contributions in the intermediate regime of interaction
strength (r_s ~ 1). Furthermore, the electron-electron interaction modifies
both the amplitude and the period of magnetic field induced oscillations in
C_v.Comment: 4 pages, 4 figures; To appear in Phys. Rev.
Mechanical Instabilities of Biological Tubes
We study theoretically the shapes of biological tubes affected by various
pathologies. When epithelial cells grow at an uncontrolled rate, the negative
tension produced by their division provokes a buckling instability. Several
shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all
of which are found in pathologies of tracheal, renal tubes or arteries. The
final shape depends crucially on the mechanical parameters of the tissues :
Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since
tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey
information as to what causes the pathology. We calculate a phase diagram of
tubular instabilities which could be a helpful guide for investigating the
underlying genetic regulation
Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019.
BackgroundAs of February 25, 2019, 875 cases of Ebola virus disease (EVD) were reported in North Kivu and Ituri Provinces, Democratic Republic of Congo. Since the beginning of October 2018, the outbreak has largely shifted into regions in which active armed conflict has occurred, and in which EVD cases and their contacts have been difficult for health workers to reach. We used available data on the current outbreak, with case-count time series from prior outbreaks, to project the short-term and long-term course of the outbreak.MethodsFor short- and long-term projections, we modeled Ebola virus transmission using a stochastic branching process that assumes gradually quenching transmission rates estimated from past EVD outbreaks, with outbreak trajectories conditioned on agreement with the course of the current outbreak, and with multiple levels of vaccination coverage. We used two regression models to estimate similar projection periods. Short- and long-term projections were estimated using negative binomial autoregression and Theil-Sen regression, respectively. We also used Gott's rule to estimate a baseline minimum-information projection. We then constructed an ensemble of forecasts to be compared and recorded for future evaluation against final outcomes. From August 20, 2018 to February 25, 2019, short-term model projections were validated against known case counts.ResultsDuring validation of short-term projections, from one week to four weeks, we found models consistently scored higher on shorter-term forecasts. Based on case counts as of February 25, the stochastic model projected a median case count of 933 cases by February 18 (95% prediction interval: 872-1054) and 955 cases by March 4 (95% prediction interval: 874-1105), while the auto-regression model projects median case counts of 889 (95% prediction interval: 876-933) and 898 (95% prediction interval: 877-983) cases for those dates, respectively. Projected median final counts range from 953 to 1,749. Although the outbreak is already larger than all past Ebola outbreaks other than the 2013-2016 outbreak of over 26,000 cases, our models do not project that it is likely to grow to that scale. The stochastic model estimates that vaccination coverage in this outbreak is lower than reported in its trial setting in Sierra Leone.ConclusionsOur projections are concentrated in a range up to about 300 cases beyond those already reported. While a catastrophic outbreak is not projected, it is not ruled out, and prevention and vigilance are warranted. Prospective validation of our models in real time allowed us to generate more accurate short-term forecasts, and this process may prove useful for future real-time short-term forecasting. We estimate that transmission rates are higher than would be seen under target levels of 62% coverage due to contact tracing and vaccination, and this model estimate may offer a surrogate indicator for the outbreak response challenges
Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers
Expression of α-smooth muscle actin (α-SMA) renders fibroblasts highly contractile and hallmarks myofibroblast differentiation. We identify α-SMA as a mechanosensitive protein that is recruited to stress fibers under high tension. Generation of this threshold tension requires the anchoring of stress fibers at sites of 8–30-μm-long “supermature” focal adhesions (suFAs), which exert a stress approximately fourfold higher (∼12 nN/μm2) on micropatterned deformable substrates than 2–6-μm-long classical FAs. Inhibition of suFA formation by growing myofibroblasts on substrates with a compliance of ≤11 kPa and on rigid micropatterns of 6-μm-long classical FA islets confines α-SMA to the cytosol. Reincorporation of α-SMA into stress fibers is established by stretching 6-μm-long classical FAs to 8.1-μm-long suFA islets on extendable membranes; the same stretch producing 5.4-μm-long classical FAs from initially 4-μm-long islets is without effect. We propose that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs on classical islets, accounts for higher stress resistance
- …