3,909 research outputs found

    On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks

    Full text link
    Flow reshaping is used in time-sensitive networks (as in the context of IEEE TSN and IETF Detnet) in order to reduce burstiness inside the network and to support the computation of guaranteed latency bounds. This is performed using per-flow regulators (such as the Token Bucket Filter) or interleaved regulators (as with IEEE TSN Asynchronous Traffic Shaping). Both types of regulators are beneficial as they cancel the increase of burstiness due to multiplexing inside the network. It was demonstrated, by using network calculus, that they do not increase the worst-case latency. However, the properties of regulators were established assuming that time is perfect in all network nodes. In reality, nodes use local, imperfect clocks. Time-sensitive networks exist in two flavours: (1) in non-synchronized networks, local clocks run independently at every node and their deviations are not controlled and (2) in synchronized networks, the deviations of local clocks are kept within very small bounds using for example a synchronization protocol (such as PTP) or a satellite based geo-positioning system (such as GPS). We revisit the properties of regulators in both cases. In non-synchronized networks, we show that ignoring the timing inaccuracies can lead to network instability due to unbounded delay in per-flow or interleaved regulators. We propose and analyze two methods (rate and burst cascade, and asynchronous dual arrival-curve method) for avoiding this problem. In synchronized networks, we show that there is no instability with per-flow regulators but, surprisingly, interleaved regulators can lead to instability. To establish these results, we develop a new framework that captures industrial requirements on clocks in both non-synchronized and synchronized networks, and we develop a toolbox that extends network calculus to account for clock imperfections.Comment: ACM SIGMETRICS 2020 Boston, Massachusetts, USA June 8-12, 202

    A General Framework for the Derivation of Regular Expressions

    Full text link
    The aim of this paper is to design a theoretical framework that allows us to perform the computation of regular expression derivatives through a space of generic structures. Thanks to this formalism, the main properties of regular expression derivation, such as the finiteness of the set of derivatives, need only be stated and proved one time, at the top level. Moreover, it is shown how to construct an alternating automaton associated with the derivation of a regular expression in this general framework. Finally, Brzozowski's derivation and Antimirov's derivation turn out to be a particular case of this general scheme and it is shown how to construct a DFA, a NFA and an AFA for both of these derivations.Comment: 22 page

    Superdiffusive, heterogeneous, and collective particle motion near the jamming transition in athermal disordered materials

    Full text link
    We use computer simulations to study the microscopic dynamics of an athermal assembly of soft particles near the fluid-to-solid, jamming transition. Borrowing tools developed to study dynamic heterogeneity near glass transitions, we discover a number of original signatures of the jamming transition at the particle scale. We observe superdiffusive, spatially heterogeneous, and collective particle motion over a characteristic scale which displays a surprising non-monotonic behavior across the transition. In the solid phase, the dynamics is an intermittent succession of elastic deformations and plastic relaxations, which are both characterized by scale-free spatial correlations and system size dependent dynamic susceptibilities. Our results show that dynamic heterogeneities in dense athermal systems and glass-formers are very different, and shed light on recent experimental reports of `anomalous' dynamical behavior near the jamming transition of granular and colloidal assemblies

    Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

    Get PDF
    Let f=(f_1,,f_m)\mathbf{f}=(f\_1,\ldots,f\_m) and g=(g_1,,g_m)\mathbf{g}=(g\_1,\ldots,g\_m) be two sets of m1m\geq 1 nonlinear polynomials over K[x_1,,x_n]\mathbb{K}[x\_1,\ldots,x\_n] (K\mathbb{K} being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping f\mathbf{f} to g\mathbf{g}. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space Kn×n\mathbb{K}^{n \times n} of n×nn \times n matrices over K\mathbb{K} and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in Kn×n\mathbb{K}^{n \times n} for various fields (including finite fields). We then consider \\#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when f=(x_1d,,x_nd)\mathbf{f}=(x\_1^d,\ldots,x\_n^d) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.Comment: Published in Journal of Complexity, Elsevier, 2015, pp.3

    Response Function of Coarsening Systems

    Full text link
    The response function of domain growth processes, and in particular the violation of the fluctuation-dissipation theorem, are studied both analytically and numerically. In the asymptotic limit of large times, the fluctuation-dissipation ratio XX, which quantifies this violation, tends to one if C>m2C>m^2 and to zero if C<m2C<m^2, corresponding to the fast (`bulk') and slow (`domain-wall') responses, respectively. In this paper, we focus on the pre-asymptotic behavior of the domain-wall response. This response is shown to scale with the typical domain length L(t)L(t) as 1/L(t)1/L(t) for dimension d>2d>2, and as ln(L(t))/L(t)\ln (L(t))/L(t) for d=2d=2. Numerical results confirming this analysis are presented

    Some Combinatorial Operators in Language Theory

    Full text link
    Multitildes are regular operators that were introduced by Caron et al. in order to increase the number of Glushkov automata. In this paper, we study the family of the multitilde operators from an algebraic point of view using the notion of operad. This leads to a combinatorial description of already known results as well as new results on compositions, actions and enumerations.Comment: 21 page

    Calculation of Contraction Coefficient under Sluice Gates and Application to Discharge Measurement

    Get PDF
    The contraction coefficient under sluice gates on flat beds is studied for both free flow and submerged conditions based on the principle of momentum conservation, relying on an analytical determination of the pressure force exerted on the upstream face of the gate together with the energy equation. The contraction coefficient varies with the relative gate opening and the relative submergence, especially at large gate openings. The contraction coefficient may be similar in submerged flow and free flow at small openings but not at large openings, as shown by some experimental results. An application to discharge measurement is also presented

    Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid

    Full text link
    The nonequilibrium dynamics of a binary Lennard-Jones mixture in a simple shear flow is investigated by means of molecular dynamics simulations. The range of temperature investigated covers both the liquid, supercooled and glassy states, while the shear rate covers both the linear and nonlinear regimes of rheology. The results can be interpreted in the context of a nonequilibrium, schematic mode-coupling theory developed recently, which makes the theory applicable to a wide range of soft glassy materials. The behavior of the viscosity is first investigated. In the nonlinear regime, strong shear-thinning is obtained. Scaling properties of the intermediate scattering functions are studied. Standard `mode-coupling properties' of factorization and time-superposition hold in this nonequilibrium situation. The fluctuation-dissipation relation is violated in the shear flow in a way very similar to that predicted theoretically, allowing for the definition of an effective temperature Teff for the slow modes of the fluid. Temperature and shear rate dependencies of Teff are studied using density fluctuations as an observable. The observable dependence of Teff is also investigated. Many different observables are found to lead to the same value of Teff, suggesting several experimental procedures to access Teff. It is proposed that tracer particle of large mass may play the role of an `effective thermometer'. When the Einstein frequency of the tracers becomes smaller than the inverse relaxation time of the fluid, a nonequilibrium equipartition theorem holds. This last result gives strong support to the thermodynamic interpretation of Teff and makes it experimentally accessible in a very direct way.Comment: Version accepted for publication in Journal of Chemical Physic
    corecore