427 research outputs found

    Estimation and identification study for flexible vehicles

    Get PDF
    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy

    Low thrust interplanetary trajectory open loop error analysis, volume 1 Final report

    Get PDF
    Computer program for open-loop error analysis of low thrust interplanetary trajectorie

    Nonlinear and adaptive estimation techniques in reentry

    Get PDF
    The development and testing of nonlinear and adaptive estimators for reentry (e.g. space shuttle) navigation and model parameter estimation or identification are reported. Of particular interest is the identifcation of vehicle lift and drag characteristics in real time. Several nonlinear filters were developed and simulated. Adaptive filters for the real time identification of vehicle lift and drag characteristics, and unmodelable acceleration, were also developed and tested by simulation. The simulations feature an uncertain system environment with rather arbitrary model errors, thus providing a definitive test of estimator performance. It was found that nonlinear effects are indeed significant in reentry trajectory estimation and a nonlinear filter is demonstrated which successfully tracks through nonlinearities without degrading the information content of the data. Under the same conditions the usual extended Kalman filter diverges and is useless. The J-adaptive filter is shown to successfully track errors in the modeled vehicle lift and drag characteristics. The same filter concept is also shown to track successfully through rather arbitrary model errors, including lift and drag errors, vehicle mass errors, atmospheric density errors, and wind gust errors

    Suboptimal filtering. Part 2 - Compensation for modeling errors in orbit determination problems Final report

    Get PDF
    Compensation for dynamic and measurement model errors in real time orbit determination system

    Urban air quality estimation study, phase 1

    Get PDF
    Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed

    J-adaptive estimation with estimated noise statistics

    Get PDF
    The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm

    Suboptimal filtering. Part 4 - Test-bed computer program Final report

    Get PDF
    Computer program plan for simulating real time observation schedules and combined effects of dynamic model errors in three-dimensional satellite motio

    A Bias-Aware EnKF Estimator for Aerodynamic Flows

    Get PDF
    Ensemble methods can integrate measurement data and CFD-based models to estimate the state of fluid systems in a robust and cost-efficient way. However, discretization errors can render numerical solutions a biased representation of reality. Left unaccounted for, biased forecast and observation models can lead to poor estimator performance. In this work, we propose a low-rank representation for the bias whose dynamics is represented by a colorednoise process. System state and bias parameters are simultaneously corrected on-line with the Ensemble Kalman Filter (EnKF) algorithm. The proposed methodology is demonstrated to achieve a 70% error reduction for the problem of estimating the state of the two-dimensional low-Re flow past a flat plate at high angle of attack using an ensemble of coarse-mesh simulations and pressure measurements at the surface of the body, compared to a bias-blind estimator. Strategies to determine the bias statistics and to deal with nonlinear observation functions in the context of ensemble methods are discussed

    Time-varying Learning and Content Analytics via Sparse Factor Analysis

    Full text link
    We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learner's concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education

    Time-Symmetric Quantum Theory of Smoothing

    Full text link
    Smoothing is an estimation technique that takes into account both past and future observations, and can be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retrodiction, and smoothing. The proposed theory solves the important problem of optimally estimating classical Markov processes coupled to a quantum system under continuous measurements, and is thus expected to find major applications in future quantum sensing systems, such as gravitational wave detectors and atomic magnetometers.Comment: 4 pages, 1 figure, v2: accepted by PR
    • …
    corecore