125 research outputs found

    Growth and yield of the sweet cherry (Prunus avium L.) as affected by training system

    Get PDF
    Modern intensive production of sweet cherry (Prunus avium L.) tends to planting of high quality cultivars on the dwarfing rootstocks in high density orchards. The most productive training system is used, providing an ideal condition for undisturbed growth and yield. The main objective of this study was to determine the best training system of sweet cherry, considering regular and high yields and fruit quality. The three-year study was carried out on a 4-years old sweet cherry orchard with cultivar summit grafted on the dwarfing rootstock Tabel ® Edabriz. Three different training systems (Spanish bush, Spindle bush and "V") were compared. The smaller vegetative growth, expressed as trunk crosssectional area (TCSA) was recorded in Spanish bush (34.68 cm2) when compared to Spindle bush (40.11 cm2) and "V" (40.82 cm2). The largest cumulative yield per hectare was gotten by the training system "V" (41.65 t/ha), followed by Spindle bush (21.12 t/ha) and Spanish bush (11.30 t/ha). Yield efficiency (YE) (kg/cm2) of Spanish bush (0.19 kg/cm2) was significantly lower than that of Spindle bush (0.32 kg/cm2) and "V" (0.28 kg/cm2). Yield per unit land area (YA) (kg/m2) differed in all training systems and the highest was recorded on "V", while the smallest was in Spanish bush. Training system and density did not affect the fruit weight. Results showed that the training system significantly affected the growth and yield of sweet cherry.Key words: Rootstock, trunk cross-sectional area (TCSA), training system

    Creating a Circular Economy Precinct

    Full text link

    Demand Management Incentives Review: Creating a level playing field for network DM in the National Electricity Market

    Full text link
    This review assesses and quantifies the financial barriers to DM created by existing economic regulatory incentives for distribution network businesses. the Australian Renewable Energy Agency (ARENA) commissioned ISF to conduct the review to support the Australian Energy Regulator (AER) in developing the new DM Incentive Scheme required by a change to the National Electricity Rules in 2015

    Wastewater gas recovery opportunities in a circular economy

    Full text link

    Classification tree analysis of second neoplasms in survivors of childhood cancer

    Get PDF
    BACKGROUND: Reports on childhood cancer survivors estimated cumulative probability of developing secondary neoplasms vary from 3,3% to 25% at 25 years from diagnosis, and the risk of developing another cancer to several times greater than in the general population. METHODS: In our retrospective study, we have used the classification tree multivariate method on a group of 849 first cancer survivors, to identify childhood cancer patients with the greatest risk for development of secondary neoplasms. RESULTS: In observed group of patients, 34 develop secondary neoplasm after treatment of primary cancer. Analysis of parameters present at the treatment of first cancer, exposed two groups of patients at the special risk for secondary neoplasm. First are female patients treated for Hodgkin's disease at the age between 10 and 15 years, whose treatment included radiotherapy. Second group at special risk were male patients with acute lymphoblastic leukemia who were treated at the age between 4,6 and 6,6 years of age. CONCLUSION: The risk groups identified in our study are similar to the results of studies that used more conventional approaches. Usefulness of our approach in study of occurrence of second neoplasms should be confirmed in larger sample study, but user friendly presentation of results makes it attractive for further studies

    Role of Surface Energy and Nano-Roughness in the Removal Efficiency of Bacterial Contamination by Nonwoven Wipes from Frequently Touched Surfaces

    Get PDF
    Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis. Plasma modification of the nano-roughness and surface energy of fibres in nonwoven wipes was found to influence the relative removal efficiencies of common bacterial pathogens from model healthcare surfaces under dynamic wiping conditions

    Cardiac damage after treatment of childhood cancer: A long-term follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With improved childhood cancer cure rate, long term sequelae are becoming an important factor of quality of life. Signs of cardiovascular disease are frequently found in long term survivors of cancer. Cardiac damage may be related to irradiation and chemotherapy.</p> <p>We have evaluated simultaneous influence of a series of independent variables on the late cardiac damage in childhood cancer survivors in Slovenia and identified groups at the highest risk.</p> <p>Methods</p> <p>211 long-term survivors of different childhood cancers, at least five years after treatment were included in the study. The evaluation included history, physical examination, electrocardiograpy, exercise testing and echocardiograpy. For analysis of risk factors, beside univariate analysis, multivariate classification tree analysis statistical method was used.</p> <p>Results and Conclusion</p> <p>Patients treated latest, from 1989–98 are at highest risk for any injury to the heart (73%). Among those treated earlier are at the highest risk those with Hodgkin's disease treated with irradiation above 30 Gy and those treated for sarcoma. Among specific forms of injury, patients treated with radiation to the heart area are at highest risk of injury to the valves. Patients treated with large doses of anthracyclines or concomitantly with anthracyclines and alkylating agents are at highest risk of systolic function defect and enlarged heart chambers. Those treated with anthracyclines are at highest risk of diastolic function defect. The time period of the patient's treatment is emerged as an important risk factor for injury of the heart.</p
    corecore