35 research outputs found

    Synthesis, fluorescence and photoisomerization studies of azobenzene-functionalized poly(alkyl aryl ether) dendrimers

    Get PDF
    A series of azobenzene-functionalized poly(alkyl aryl ether) dendrimers have been synthesized and their photochemical and photophysical properties in solution and as thin films have been investigated. Although the photochemical behavior of the azodendrimers in solution indicated that the azobenzene units behave independently, very similar to the constituent monomer azobenzene unit, the properties of thin solid films of the dendrimers were distinctly different. The azodendrimers, AzoG1, AzoG2, and AzoG3 were observed to form stable supercooled glasses, which showed long-wavelength absorption and red emission characteristics of J-aggregates of the azobenzene chromophores. Reversible photoinduced isomerization of the azodendrimers in the glassy state is described

    Characterization of the virome associated with Haemagogus mosquitoes in Trinidad, West Indies

    Get PDF
    Currently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector

    Synthesis and reactivity profiles of phosphinated poly(alkyl aryl ether) dendrimers

    No full text
    Poly(alkyl aryl ether) dendrimers were utilized to synthesize a series of new triphenylphosphine functionalized dendrimers. Zero, first, second and third generation dendrimers, carrying 3, 6, 12 and 24 triphenylphosphine units, were prepared and characterized. The new triphenylphosphine containing dendrimers were assessed for their reactivity profiles and in this instance, the dendrimers were used as reagents to mediate Mitsunobu etherification reaction between phenol and various primary, secondary and benzylic alcohols. In addition, dendritic poly-phenols were also tested in an O-benzylation reaction. A monomeric methoxy group attached triphenylphosphine acted as a control for comparison of reactivity profiles of dendrimers. It was observed that the etherification reaction was mediated efficiently by the dendritic reagent, and in addition, the dendritic phosphine oxide reagents could be recovered quantitatively by precipitation methods. The recovered dendritic phosphine oxides were reduced subsequently to the corresponding phosphines and used as reagents for the Mitsunobu reaction, repetitively

    Synthesis and reactivity profiles of phosphinated poly(alkyl aryl ether) dendrimers

    No full text
    Poly(alkyl aryl ether) dendrimers were utilized to synthesize a series of new triphenylphosphine functionalized dendrimers. Zero, first, second and third generation dendrimers, carrying 3, 6, 12 and 24 triphenylphosphine units, were prepared and characterized. The new triphenylphosphine containing dendrimers were assessed for their reactivity profiles and in this instance, the dendrimers were used as reagents to mediate Mitsunobu etherification reaction between phenol and various primary, secondary and benzylic alcohols. In addition, dendritic poly-phenols were also tested in an O-benzylation reaction. A monomeric methoxy group attached triphenylphosphine acted as a control for comparison of reactivity profiles of dendrimers. It was observed that the etherification reaction was mediated efficiently by the dendritic reagent, and in addition, the dendritic phosphine oxide reagents could be recovered quantitatively by precipitation methods. The recovered dendritic phosphine oxides were reduced subsequently to the corresponding phosphines and used as reagents for the Mitsunobu reaction, repetitively

    Synthesis of poly(alkyl aryl ether) dendrimers

    No full text
    Poly(alkyl aryl ether) dendrimers of up to four generations composed of a phloroglucinol core, branching components, and pentamethylene spacers are synthesized by a divergent growth methodology. A repetitive synthetic sequence of phenolic O-alkylation and O-benzyl deprotection reactions are adopted for the synthesis of these dendrimers. The peripheries of the dendrimers contain 6, 12, 24, and 48 phenolic hydroxyl groups, either in the protected or unprotected form, for the first, second, third, and fourth generations, respectively. Because of the presence of hydrophilic exterior and relatively hydrophobic interior regions, alkaline aqueous solutions of these dendrimers are able to solubilize an otherwise insoluble pyrene molecule and these supramolecular complexes precipitate upon neutralization of the aqueous solutions

    Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment.

    No full text
    This study evaluated the effectiveness of a commercially available Ascophyllum nodosum alkaline extract as a plant growth stimulant and defense elicitor against foliar diseases of tomato and sweet pepper caused by Xanthomonas campestris pv. vesicatoria and Alternaria solani in a tropical environment. Foliar applications of 0.5% A. nodosum extract (AN) at 10-day intervals resulted in significant (P < 0.05) increase in plant growth parameters, including plant height (40%), leaf number (50%), plant dry biomass (52%), root length (59%) and chlorophyll content (20%) compared to control. Treated plants also had a significantly higher number of flower clusters, flower numbers, fruits per cluster and total harvested fruit yield. The Ascophyllum extract significantly (P < 0.05) reduced disease incidence by the pathogens in both crops under greenhouse and field conditions. The combinatory treatment of seaweed extract and a minimum dose of contact fungicide in field trials, recorded the overall lowest disease levels (60% reduction) and highest yield (57% increase). Investigations into the mechanisms of disease suppression revealed the effects of the extract in inducing the activities of defense-related enzymes including phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, chitinase and β-1,3-glucanase, as well as the levels of total phenolic compounds. The effect on SA, JA and ET-mediated signalling defense pathways was examined by quantifying expression levels of marker genes including PR1-a, PinII and ETR-1, for the above pathways respectively. Both crop plants treated with A. nodosum extract had significantly higher expression levels of the PinII and ETR-1 marker genes than controls. This was coupled with a marked increase in gene transcripts involved in auxin (IAA), gibberellin (Ga2Ox) and cytokinin (IPT) biosynthesis, which provides possible evidence for induced growth in plants treated with AN extract. Cross-talks between growth and defense responses as a result of seaweed extract application could evidently implicate the benefits of seaweed extract usage in sustainable crop production

    copLAB gene prevalence and diversity among Trinidadian Xanthomonas spp. black-rot lesion isolates with variable copper resistance profiles

    No full text
    Background There has been limited exploration of copLAB genotypes and associated copper resistance phenotypes in Xanthomonas spp. in the southern Caribbean region. An earlier study highlighted a variant copLAB gene cluster found in one Trinidadian Xanthomonas campestris pv. campestris (Xcc) strain (BrA1), with <90% similarity to previously reported Xanthomonas copLAB genes. With only one report describing this copper resistance genotype, the current study investigated the distribution of the BrA1 variant copLAB gene cluster and previously reported forms of copper resistance genes in local Xanthomonas spp. Methods Xanthomonas spp. were isolated from black-rot infected lesions on leaf tissue from crucifer crops at intensively farmed sites with high agrochemical usage in Trinidad. The identity of morphologically identified isolates were confirmed using a paired primer PCR based screen and 16s rRNA partial gene sequencing. MGY agar amended with CuSO4.5H2O up to 2.4 mM was used to establish MIC’s for confirmed isolates and group strains as sensitive, tolerant, or resistant to copper. Separate primer pairs targeting the BrA1 variant copLAB genes and those predicted to target multiple homologs found in Xanthomonas and Stenotrophomonas spp. were used to screen copper resistant isolates. Select amplicons were sanger sequenced and evolutionary relationships inferred from global reference sequences using a ML approach. Results Only four copper sensitive/tolerant Xanthomonas sp. strains were isolated, with 35 others classed as copper-resistant from a total population of 45 isolates. PCR detection of copLAB genes revealed two PCR negative copper-resistant resistant strains. Variant copLAB genes were only found in Xcc from the original source location of the BrA1 strain, Aranguez. Other copper-resistant strains contained other copLAB homologs that clustered into three distinct clades. These groups were more similar to genes from X. perforans plasmids and Stenotrophomonas spp. chromosomal homologs than reference Xcc sequences. This study highlights the localisation of the BrA1 variant copLAB genes to one agricultural community and the presence of three distinct copLAB gene groupings in Xcc and related Xanthomonas spp. with defined CuSO4.5H2O MIC. Further characterisation of these gene groups and copper resistance gene exchange dynamics on and within leaf tissue between Xcc and other Xanthomonas species are needed as similar gene clusters showed variable copper sensitivity profiles. This work will serve as a baseline for copper resistance gene characterisation in Trinidad and the wider Caribbean region and can be used to boost already lacking resistant phytopathogen management in the region

    Synthesis, Fluorescence and Photoisomerization Studies of Azobenzene-Functionalized Poly(alkyl aryl ether) Dendrimers

    No full text
    A series of azobenzene-functionalized poly(alkyl aryl ether) dendrimers have been synthesized and their photochemical and photophysical properties in solution and as thin films have been investigated. Although the photochemical behavior of the azodendrimers in solution indicated that the azobenzene units behave independently, very similar to the constituent monomer azobenzene unit, the properties of thin solid films of the dendrimers were distinctly different. The azodendrimers, AzoG1, AzoG2, and AzoG3 were observed to form stable supercooled glasses, which showed long-wavelength absorption and red emission characteristics of J-aggregates of the azobenzene chromophores. Reversible photoinduced isomerization of the azodendrimers in the glassy state is described
    corecore