14 research outputs found

    Modeling correlation indices between bladder and Foley's catheter balloon dose with CT-based planning using limited CT slices in intracavitary brachytherapy for carcinoma of cervix

    Get PDF
    Purpose: To derive and validate an index to correlate the bladder dose with the catheter balloon dose using limited computed tomography (CT) slices. Materials and Methods: Applicator geometry reconstructed from orthogonal radiographs were back-projected on CT images of the same patients for anatomy-based dosimetric evaluation. The correlation indices derived using power function of the catheter balloon dose and the bladder volume dose were validated in 31 patients with cervical cancer. Results: There was significant correlation between International Commission on Radiation Units (ICRU)-38 balloon reference dose (Dr) and the dose received by 25% bladder volume (D 25 ) (P < 0.0001). Significant correlation was also found between the reference dose of mid-balloon point (D rm ) and the dose to D 25 (P < 0.0001). Average percentage difference [100 x (observed index - expected index) / expected index] of observed value of I\u2032 25 (index for the dose to D25 bladder with respect to mid-balloon reference point) from that of expected value was 0.52%, when the index was modeled with reference dose alone. Similarly the average percentage difference for I\u203210cc (index for the dose to 10 cc volume of bladder with respect to mid balloon point) was 0.84%. When this index was modeled with absolute bladder volume and reference dose, standard deviation of the percentage difference between observed and expected index for D rm reduced by approximately 2% when compared to D r . Conclusion: For clinical applications, correlation index modeled with reference dose and volume predicts dose to absolute volume of bladder. Correlation index modeled with reference dose gives a good estimate of dose to relative bladder volume. From our study, we found D rm to be a better indicator of bladder dose than D r

    Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain

    Get PDF
    Grading of gliomas is a piece of critical information related to prognosis and survival. Classifying glioma grade by semantic radiological features is subjective, requires multiple MRI sequences, is quite complex and clinically demanding, and can very often result in erroneous radiological diagnosis. We used a radiomics approach with machine learning classifiers to determine the grade of gliomas. Eighty-three patients with histopathologically proven gliomas underwent MRI of the brain. Whenever available, immunohistochemistry was additionally used to augment the histopathological diagnosis. Segmentation was performed manually on the T2W MR sequence using the TexRad texture analysis softwareTM, Version 3.10. Forty-two radiomics features, which included first-order features and shape features, were derived and compared between high-grade and low-grade gliomas. Features were selected by recursive feature elimination using a random forest algorithm method. The classification performance of the models was measured using accuracy, precision, recall, f1 score, and area under the curve (AUC) of the receiver operating characteristic curve. A 10-fold cross-validation was adopted to separate the training and the test data. The selected features were used to build five classifier models: support vector machine, random forest, gradient boost, naive Bayes, and AdaBoost classifiers. The random forest model performed the best, achieving an AUC of 0.81, an accuracy of 0.83, f1 score of 0.88, a recall of 0.93, and a precision of 0.85 for the test cohort. The results suggest that machine-learning-based radiomics features extracted from multiparametric MRI images can provide a non-invasive method for predicting glioma grades preoperatively. In the present study, we extracted the radiomics features from a single cross-sectional image of the T2W MRI sequence and utilized these features to build a fairly robust model to classify low-grade gliomas from high-grade gliomas (grade 4 gliomas)

    Oncolytic immunovirotherapy for high-grade gliomas: A novel and an evolving therapeutic option

    Get PDF
    Glioblastoma is one of the most difficult tumor types to manage, having high morbidity and mortality with available therapies (surgery, radiotherapy and chemotherapy). Immunotherapeutic agents like Oncolytic Viruses (OVs), Immune Checkpoint Inhibitors (ICIs), Chimeric Antigen Receptor (CAR) T cells and Natural Killer (NK) cell therapies are now being extensively used as experimental therapies in the management of glioblastoma. Oncolytic virotherapy is an emerging form of anti-cancer therapy, employing nature’s own agents to target and destroy glioma cells. Several oncolytic viruses have demonstrated the ability to infect and lyse glioma cells by inducing apoptosis or triggering an anti-tumor immune response. In this mini-review, we discuss the role of OV therapy (OVT) in malignant gliomas with a special focus on ongoing and completed clinical trials and the ensuing challenges and perspectives thereof in subsequent sections

    Dosimetric Impact of Voluntary Deep Inspiration Breath Hold (DIBH) in Mediastinal Hodgkin Lymphomas: A Comparative Evaluation of Three Different Intensity Modulated Radiation Therapy (IMRT) Delivery Methods Using Voluntary DIBH and Free Breathing Techniques

    No full text
    Hodgkin lymphomas are radiosensitive and curable tumors that often involve the mediastinum. However, the application of radiation therapy to the mediastinum is associated with late effects including cardiac and pulmonary toxicities and secondary cancers. The adoption of conformal IMRT and deep inspiration breath- hold (DIBH) can reduce the dose to healthy normal tissues (lungs, heart and breast). We compared the dosimetry of organs at risk (OARs) using different IMRT techniques for two breathing conditions, i.e., deep inspiration breath hold (DIBH) and free breathing. Twenty-three patients with early-stage mediastinal Hodgkin lymphomas were accrued in the prospective study. The patients were given treatment plans which utilized full arc volumetric modulated arc therapy (F-VMAT), Butterfly VMAT (B-VMAT), and fixed field IMRT (FF-IMRT) techniques for both DIBH and free breathing methods, respectively. All the plans were optimized to deliver 95% of the prescription dose which was 25.2 Gy to 95% of the PTV volume. The mean dose and standard error of the mean for each OAR, conformity index (CI), and homogeneity index (HI) for the target using the three planning techniques were calculated and compared using Student’s t-test for parametric data and Wilcoxon signed-rank test for non-parametric data. The HI and CI of the target was not compromised using the DIBH technique for mediastinal lymphomas. The mean values of CI and HI for both DIBH and FB were comparable. The mean heart doses were reduced by 2.1 Gy, 2.54 Gy, and 2.38 Gy in DIBH compared to FB for the F-VMAT, B-VMAT, and IMRT techniques, respectively. There was a significant reduction in V5Gy, V10Gy, and V15Gy to the heart (p p = 0.004). DIBH results in lower heart, lung, and breast doses than free breathing in mediastinal Hodgkin Lymphoma. Among the different IMRT techniques, FF-IMRT, B-VMAT, and F-VMAT showed similar PTV coverage, with similar conformity and homogeneity indices. However, the time taken for FF-IMRT was much longer than for the F-VMAT and B-VMAT techniques for both breathing methods. B-VMAT and F-VMAT emerged as the optimal planning techniques able to achieve the best target coverage and lower doses to the OARs, with less time required to deliver the prescribed dose

    Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain

    No full text
    Grading of gliomas is a piece of critical information related to prognosis and survival. Classifying glioma grade by semantic radiological features is subjective, requires multiple MRI sequences, is quite complex and clinically demanding, and can very often result in erroneous radiological diagnosis. We used a radiomics approach with machine learning classifiers to determine the grade of gliomas. Eighty-three patients with histopathologically proven gliomas underwent MRI of the brain. Whenever available, immunohistochemistry was additionally used to augment the histopathological diagnosis. Segmentation was performed manually on the T2W MR sequence using the TexRad texture analysis softwareTM, Version 3.10. Forty-two radiomics features, which included first-order features and shape features, were derived and compared between high-grade and low-grade gliomas. Features were selected by recursive feature elimination using a random forest algorithm method. The classification performance of the models was measured using accuracy, precision, recall, f1 score, and area under the curve (AUC) of the receiver operating characteristic curve. A 10-fold cross-validation was adopted to separate the training and the test data. The selected features were used to build five classifier models: support vector machine, random forest, gradient boost, naive Bayes, and AdaBoost classifiers. The random forest model performed the best, achieving an AUC of 0.81, an accuracy of 0.83, f1 score of 0.88, a recall of 0.93, and a precision of 0.85 for the test cohort. The results suggest that machine-learning-based radiomics features extracted from multiparametric MRI images can provide a non-invasive method for predicting glioma grades preoperatively. In the present study, we extracted the radiomics features from a single cross-sectional image of the T2W MRI sequence and utilized these features to build a fairly robust model to classify low-grade gliomas from high-grade gliomas (grade 4 gliomas)

    Role of radiation therapy in patients with relapsed/refractory diffuse large B-cell lymphoma: guidelines from the International Lymphoma Radiation Oncology Group

    No full text
    Approximately 30% to 40% of patients with diffuse large B-cell lymphoma (DLBCL) will have either primary refractory disease or relapse after chemotherapy. In transplant-eligible patients, those with disease sensitive to salvage chemotherapy will significantly benefit from high-dose therapy with autologous stem cell transplantation. The rationale for considering radiation therapy (RT) for selected patients with relapsed/refractory DLBCL as a part of the salvage program is based on data regarding the patterns of relapse and retrospective series showing improved local control and clinical outcomes for patients who received peritransplant RT. In transplant-ineligible patients, RT can provide effective palliation and, in selected cases, be administered with curative intent if the relapsed/refractory disease is localized. We have reviewed the indications for RT in the setting of relapsed/refractory DLBCL and provided recommendations regarding the optimal timing of RT, dose fractionation scheme, and treatment volume in the context of specific case scenarios.</p

    DataSheet_1_Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach.pdf

    No full text
    Background and purposeSemantic imaging features have been used for molecular subclassification of high-grade gliomas. Radiomics-based prediction of molecular subgroups has the potential to strategize and individualize therapy. Using MRI texture features, we propose to distinguish between IDH wild type and IDH mutant type high grade gliomas.MethodsBetween 2013 and 2020, 100 patients were retrospectively analyzed for the radiomics study. Immunohistochemistry of the pathological specimen was used to initially identify patients for the IDH mutant/wild phenotype and was then confirmed by Sanger’s sequencing. Image texture analysis was performed on contrast-enhanced T1 (T1C) and T2 weighted (T2W) MR images. Manual segmentation was performed on MR image slices followed by single-slice multiple sampling image augmentation. Both whole tumor multislice segmentation and single-slice multiple sampling approaches were used to arrive at the best model. Radiomic features were extracted, which included first-order features, second-order (GLCM—Grey level co-occurrence matrix), and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression, followed by radiomic classification using Support Vector Machine (SVM) and a 10-fold cross-validation strategy for model development. The area under the Receiver Operator Characteristic (ROC) curve and predictive accuracy were used as diagnostic metrics to evaluate the model to classify IDH mutant and wild-type subgroups.ResultsMultislice analysis resulted in a better model compared to the single-slice multiple-sampling approach. A total of 164 MR-based texture features were extracted, out of which LASSO regression identified 14 distinctive GLCM features for the endpoint, which were used for further model development. The best model was achieved by using combined T1C and T2W MR images using a Quadratic Support Vector Machine Classifier and a 10-fold internal cross-validation approach, which demonstrated a predictive accuracy of 89% with an AUC of 0.89 for each IDH mutant and IDH wild subgroup.ConclusionA machine learning classifier of radiomic features extracted from multiparametric MRI images (T1C and T2w) provides important diagnostic information for the non-invasive prediction of the IDH mutant or wild-type phenotype of high-grade gliomas and may have potential use in either escalating or de-escalating adjuvant therapy for gliomas or for using targeted agents in the future.</p

    DataSheet_2_Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach.pdf

    No full text
    Background and purposeSemantic imaging features have been used for molecular subclassification of high-grade gliomas. Radiomics-based prediction of molecular subgroups has the potential to strategize and individualize therapy. Using MRI texture features, we propose to distinguish between IDH wild type and IDH mutant type high grade gliomas.MethodsBetween 2013 and 2020, 100 patients were retrospectively analyzed for the radiomics study. Immunohistochemistry of the pathological specimen was used to initially identify patients for the IDH mutant/wild phenotype and was then confirmed by Sanger’s sequencing. Image texture analysis was performed on contrast-enhanced T1 (T1C) and T2 weighted (T2W) MR images. Manual segmentation was performed on MR image slices followed by single-slice multiple sampling image augmentation. Both whole tumor multislice segmentation and single-slice multiple sampling approaches were used to arrive at the best model. Radiomic features were extracted, which included first-order features, second-order (GLCM—Grey level co-occurrence matrix), and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression, followed by radiomic classification using Support Vector Machine (SVM) and a 10-fold cross-validation strategy for model development. The area under the Receiver Operator Characteristic (ROC) curve and predictive accuracy were used as diagnostic metrics to evaluate the model to classify IDH mutant and wild-type subgroups.ResultsMultislice analysis resulted in a better model compared to the single-slice multiple-sampling approach. A total of 164 MR-based texture features were extracted, out of which LASSO regression identified 14 distinctive GLCM features for the endpoint, which were used for further model development. The best model was achieved by using combined T1C and T2W MR images using a Quadratic Support Vector Machine Classifier and a 10-fold internal cross-validation approach, which demonstrated a predictive accuracy of 89% with an AUC of 0.89 for each IDH mutant and IDH wild subgroup.ConclusionA machine learning classifier of radiomic features extracted from multiparametric MRI images (T1C and T2w) provides important diagnostic information for the non-invasive prediction of the IDH mutant or wild-type phenotype of high-grade gliomas and may have potential use in either escalating or de-escalating adjuvant therapy for gliomas or for using targeted agents in the future.</p
    corecore