2,658 research outputs found

    Sampling and Reconstruction of Spatial Fields using Mobile Sensors

    Get PDF
    Spatial sampling is traditionally studied in a static setting where static sensors scattered around space take measurements of the spatial field at their locations. In this paper we study the emerging paradigm of sampling and reconstructing spatial fields using sensors that move through space. We show that mobile sensing offers some unique advantages over static sensing in sensing time-invariant bandlimited spatial fields. Since a moving sensor encounters such a spatial field along its path as a time-domain signal, a time-domain anti-aliasing filter can be employed prior to sampling the signal received at the sensor. Such a filtering procedure, when used by a configuration of sensors moving at constant speeds along equispaced parallel lines, leads to a complete suppression of spatial aliasing in the direction of motion of the sensors. We analytically quantify the advantage of using such a sampling scheme over a static sampling scheme by computing the reduction in sampling noise due to the filter. We also analyze the effects of non-uniform sensor speeds on the reconstruction accuracy. Using simulation examples we demonstrate the advantages of mobile sampling over static sampling in practical problems. We extend our analysis to sampling and reconstruction schemes for monitoring time-varying bandlimited fields using mobile sensors. We demonstrate that in some situations we require a lower density of sensors when using a mobile sensing scheme instead of the conventional static sensing scheme. The exact advantage is quantified for a problem of sampling and reconstructing an audio field.Comment: Submitted to IEEE Transactions on Signal Processing May 2012; revised Oct 201

    A Decomposition Algorithm to Solve the Multi-Hop Peer-to-Peer Ride-Matching Problem

    Full text link
    In this paper, we mathematically model the multi-hop Peer-to-Peer (P2P) ride-matching problem as a binary program. We formulate this problem as a many-to-many problem in which a rider can travel by transferring between multiple drivers, and a driver can carry multiple riders. We propose a pre-processing procedure to reduce the size of the problem, and devise a decomposition algorithm to solve the original ride-matching problem to optimality by means of solving multiple smaller problems. We conduct extensive numerical experiments to demonstrate the computational efficiency of the proposed algorithm and show its practical applicability to reasonably-sized dynamic ride-matching contexts. Finally, in the interest of even lower solution times, we propose heuristic solution methods, and investigate the trade-offs between solution time and accuracy

    Study of a Dynamic Cooperative Trading Queue Routing Control Scheme for Freeways and Facilities with Parallel Queues

    Full text link
    This article explores the coalitional stability of a new cooperative control policy for freeways and parallel queuing facilities with multiple servers. Based on predicted future delays per queue or lane, a VOT-heterogeneous population of agents can agree to switch lanes or queues and transfer payments to each other in order to minimize the total cost of the incoming platoon. The strategic interaction is captured by an n-level Stackelberg model with coalitions, while the cooperative structure is formulated as a partition function game (PFG). The stability concept explored is the strong-core for PFGs which we found appropiate given the nature of the problem. This concept ensures that the efficient allocation is individually rational and coalitionally stable. We analyze this control mechanism for two settings: a static vertical queue and a dynamic horizontal queue. For the former, we first characterize the properties of the underlying cooperative game. Our simulation results suggest that the setting is always strong-core stable. For the latter, we propose a new relaxation program for the strong-core concept. Our simulation results on a freeway bottleneck with constant outflow using Newell's car-following model show the imputations to be generally strong-core stable and the coalitional instabilities to remain small with regard to users' costs.Comment: 3 figures. Presented at Annual Meeting Transportation Research Board 2018, Washington DC. Proof of conjecture 1 pendin

    Temperature Overloads in Power Grids Under Uncertainty: a Large Deviations Approach

    Get PDF
    The advent of renewable energy has huge implications for the design and control of power grids. Due to increasing supply-side uncertainty, traditional reliability constraints such as strict bounds on current, voltage and temperature in a transmission line have to be replaced by computationally demanding chance constraints. In this paper we use large deviations techniques to study the probability of current and temperature overloads in power grids with stochastic power injections, and develop corresponding safe capacity regions. In particular, we characterize the set of admissible power injections such that the probability of overloading of any line over a given time interval stays below a fixed target. We show how enforcing (stochastic) constraints on temperature, rather than on current, results in a less conservative approach and can thus lead to capacity gains.Comment: 12 pages (10 pages + 2 pages appendix), 2 figures. Revised version with extended numerical sectio

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    Minimax Robust Quickest Change Detection

    Full text link
    The popular criteria of optimality for quickest change detection procedures are the Lorden criterion, the Shiryaev-Roberts-Pollak criterion, and the Bayesian criterion. In this paper a robust version of these quickest change detection problems is considered when the pre-change and post-change distributions are not known exactly but belong to known uncertainty classes of distributions. For uncertainty classes that satisfy a specific condition, it is shown that one can identify least favorable distributions (LFDs) from the uncertainty classes, such that the detection rule designed for the LFDs is optimal for the robust problem in a minimax sense. The condition is similar to that required for the identification of LFDs for the robust hypothesis testing problem originally studied by Huber. An upper bound on the delay incurred by the robust test is also obtained in the asymptotic setting under the Lorden criterion of optimality. This bound quantifies the delay penalty incurred to guarantee robustness. When the LFDs can be identified, the proposed test is easier to implement than the CUSUM test based on the Generalized Likelihood Ratio (GLR) statistic which is a popular approach for such robust change detection problems. The proposed test is also shown to give better performance than the GLR test in simulations for some parameter values.Comment: Submitted to IEEE Transactions on Information Theory, Nov. 2009. Revised May 201
    corecore