Spatial sampling is traditionally studied in a static setting where static
sensors scattered around space take measurements of the spatial field at their
locations. In this paper we study the emerging paradigm of sampling and
reconstructing spatial fields using sensors that move through space. We show
that mobile sensing offers some unique advantages over static sensing in
sensing time-invariant bandlimited spatial fields. Since a moving sensor
encounters such a spatial field along its path as a time-domain signal, a
time-domain anti-aliasing filter can be employed prior to sampling the signal
received at the sensor. Such a filtering procedure, when used by a
configuration of sensors moving at constant speeds along equispaced parallel
lines, leads to a complete suppression of spatial aliasing in the direction of
motion of the sensors. We analytically quantify the advantage of using such a
sampling scheme over a static sampling scheme by computing the reduction in
sampling noise due to the filter. We also analyze the effects of non-uniform
sensor speeds on the reconstruction accuracy. Using simulation examples we
demonstrate the advantages of mobile sampling over static sampling in practical
problems.
We extend our analysis to sampling and reconstruction schemes for monitoring
time-varying bandlimited fields using mobile sensors. We demonstrate that in
some situations we require a lower density of sensors when using a mobile
sensing scheme instead of the conventional static sensing scheme. The exact
advantage is quantified for a problem of sampling and reconstructing an audio
field.Comment: Submitted to IEEE Transactions on Signal Processing May 2012; revised
Oct 201