14 research outputs found

    Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant D (SP-D) has important regulatory functions for innate immunity and has been implicated as a biomarker for chronic obstructive pulmonary disease (COPD). We hypothesized that COPD patients would have reduced bronchoalveolar lavage (BAL) fluid SP-D levels compared to healthy smoking and non-smoking controls.</p> <p>Methods</p> <p>BAL SP-D and phospholipids were quantified and corrected for dilution in 110 subjects (65 healthy never smokers, 23 smokers with normal spirometry, and 22 smokers with COPD).</p> <p>Results</p> <p>BAL SP-D was highest in never smokers (mean 51.9 μg/mL ± 7.1 μg/mL standard error) compared to both smokers with normal spirometry (16.0 μg/mL ± 11.8 μg/mL) and subjects with COPD (19.1 μg/mL ± 12.9 μg/mL; P < 0.0001). Among smokers with COPD, BAL SP-D correlated significantly with FEV<sub>1</sub>% predicted (R = 0.43; P < 0.05); however, the strongest predictor of BAL SP-D was smoking status. BAL SP-D levels were lowest in current smokers (12.8 μg/mL ± 11.0 μg/mL), intermediate in former smokers (25.2 μg/mL ± 14.2 μg/mL; P < 0.008), and highest in never smokers. BAL phospholipids were also lowest in current smokers (6.5 nmol ± 1.5 nmol), intermediate in former smokers (13.1 nmol ± 2.1 nmol), and highest in never smokers (14.8 nmol ± 1.1 nmol; P < 0.0001).</p> <p>Conclusions</p> <p>These data suggest that smokers, and especially current smokers, exhibit significantly reduced BAL SP-D and phospholipids compared to nonsmokers. Our findings may help better explain the mechanism that leads to the rapid progression of disease and increased incidence of infection in smokers.</p

    Disaster Neurology Update: Focus on the COVID-19 Pandemic

    No full text
    In 2013, the term disaster neurology was introduced to describe a new practice opportunity for neurologists interested in providing needed, nonsurgical neurologic care in regions affected by natural or human-influenced disasters. Although previously presented as an option for interested neurologists, the coronavirus disease 2019 (COVID-19) pandemic has made it clear that every neurologist should be prepared to take on the unique challenges of disaster neurology. Examining the role of neurologists on the frontlines of the COVID-19 pandemic response represents an opportunity to review and apply key features of disaster neurology, including recognizing the categories of neurologic cases expected to be seen during a disaster, adapting inpatient and outpatient workflows, and accommodating the needs of vulnerable populations. Relating principles of disaster neurology to the response of neurologists to the current pandemic informs best practices for neurologic care as COVID-19 cases continue to surge throughout the United States and abroad

    Genetic contribution to multiple sclerosis risk among Ashkenazi Jews

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, with a strong genetic component. Over 100 genetic loci have been implicated in susceptibility to MS in European populations, the most prominent being the 15:01 allele of the HLA-DRB1 gene. The prevalence of MS is high in European populations including those of Ashkenazi origin, and low in African and Asian populations including those of Jewish origin.Here we identified and extracted a total of 213 Ashkenazi MS cases and 546 ethnically matched healthy control individuals from two previous genome-wide case-control association analyses, and 72 trios (affected proband and two unaffected parents) from a previous genome-wide transmission disequilibrium association study, using genetic data to define Ashkenazi. We compared the pattern of genetic risk between Ashkenazi and non-Ashkenazi Europeans. We also sought to identify novel Ashkenazi-specific risk loci by performing association tests on the subset of Ashkenazi cases, controls, probands, and parents from each study.The HLA-DRB1*15:01 allele and the non-HLA risk alleles were present at relatively low frequencies among Ashkenazi and explained a smaller fraction of the population-level risk when compared to non-Ashkenazi Europeans. Alternative HLA susceptibility alleles were identified in an Ashkenazi-only association study, including HLA-A*68:02 and one or both genes in the HLA-B*38:01-HLA-C*12:03 haplotype. The genome-wide screen in Ashkenazi did not reveal any loci associated with MS risk.These results suggest that genetic susceptibility to MS in Ashkenazi Jews has not been as well established as that of non-Ashkenazi Europeans. This implies value in studying large well-characterized Ashkenazi populations to accelerate gene discovery in complex genetic diseases

    An ImmunoChip study of multiple sclerosis risk in African Americans

    No full text
    The aims of this study were: (i) to determine to what degree multiple sclerosis-associated loci discovered in European populations also influence susceptibility in African Americans; (ii) to assess the extent to which the unique linkage disequilibrium patterns in African Americans can contribute to localizing the functionally relevant regions or genes; and (iii) to search for novel African American multiple sclerosis-associated loci. Using the ImmunoChip custom array we genotyped 803 African American cases with multiple sclerosis and 1516 African American control subjects at 130 135 autosomal single nucleotide polymorphisms. We conducted association analysis with rigorous adjustments for population stratification and admixture. Of the 110 non-major histocompatibility complex multiple sclerosis-associated variants identified in Europeans, 96 passed stringent quality control in our African American data set and of these, >70% (69) showed over-representation of the same allele amongst cases, including 21 with nominally significant evidence for association (one-tailed test P < 0.05). At a further eight loci we found nominally significant association with an alternate correlated risk-tagging single nucleotide polymorphism from the same region. Outside the regions known to be associated in Europeans, we found seven potentially associated novel candidate multiple sclerosis variants (P < 10(−4)), one of which (rs2702180) also showed nominally significant evidence for association (one-tailed test P = 0.034) in an independent second cohort of 620 African American cases and 1565 control subjects. However, none of these novel associations reached genome-wide significance (combined P = 6.3 × 10(−5)). Our data demonstrate substantial overlap between African American and European multiple sclerosis variants, indicating common genetic contributions to multiple sclerosis risk
    corecore