16 research outputs found

    Weeds enhance pollinator diversity and fruit yield in mango

    Get PDF
    Agriculture is dependent on insect pollination, yet in areas of intensive production agriculture, there is often a decline in plant and insect diversity. As native habitats and plants are replaced, often only the weeds or unwanted vegetation persist. This study compared insect diversity on mango, Mangifera indica, a tropical fruit tree dependent on insect pollination, when weeds were present in cultivation versus when they were removed mechanically. The pollinating insects on both weeds and mango trees were examined as well as fruit set and yield in both the weed-free and weedy treatment in South Florida. There were significantly more pollinators and key pollinator families on the weedy mango trees, as well as significantly greater fruit yield in the weedy treatment compared to the weed-free treatment. Utilizing weeds, especially native species, as insectary plants can help ensure sufficient pollination of mango and increase biodiversity across crop monocropping systems

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Weeds Enhance Pollinator Diversity and Fruit Yield in Mango

    Get PDF
    Agriculture is dependent on insect pollination, yet in areas of intensive production agriculture, there is often a decline in plant and insect diversity. As native habitats and plants are replaced, often only the weeds or unwanted vegetation persist. This study compared insect diversity on mango, Mangifera indica, a tropical fruit tree dependent on insect pollination, when weeds were present in cultivation versus when they were removed mechanically. The pollinating insects on both weeds and mango trees were examined as well as fruit set and yield in both the weed-free and weedy treatment in South Florida. There were significantly more pollinators and key pollinator families on the weedy mango trees, as well as significantly greater fruit yield in the weedy treatment compared to the weed-free treatment. Utilizing weeds, especially native species, as insectary plants can help ensure sufficient pollination of mango and increase biodiversity across crop monocropping systems

    Influence of Leguminous Cover Crops on Soil Chemical and Biological Properties in a No-Till Tropical Fruit Orchard

    No full text
    South Florida’s agricultural soils are traditionally low in organic matter (OM) and high in carbonate rock fragments. These calcareous soils are inherently nutrient-poor and require management for successful crop production. Sunn hemp (SH, Crotalaria juncea) and velvet bean (VB, Mucuna pruriens) are highly productive leguminous cover crops (CCs) that have shown potential to add large quantities of dry biomass to nutrient- and organic-matter-limited systems. This study focuses on intercropping these two CCs with young carambola (Averrhoa carambola) trees. The objective was to test the effectiveness of green manure crops in providing nutrients and supplementing traditional fertilizer regimes with a sustainable soil-building option. Typically, poultry manure (PM) is the standard fertilizer used in organic or sustainable production in the study area. As such, PM treatments and fallow were included for comparison. The treatments were fallow control (F), fallow with PM (FM), sunn hemp (SH), SH with PM (SHM), velvet bean (VB), and VB with PM (VBM). Sunn hemp and VB were grown for two summer growing seasons. At the end of each 90-day growing period, the CCs were terminated and left on the soil surface to decompose in a no-till fashion. The results suggest that SH treatments produced the greatest amount of dry biomass material ranging from 48 to 71% higher than VB over two growing seasons. As a result, SH CCs also accumulated significantly higher amounts of total carbon (TC) and total nitrogen (TN) within their dry biomass that was added to the soil. Sunn hemp, SHM, and FM treatments showed the greatest accumulation of soil OM, TC, and TN. Soil inorganic N (NH₄⁺ + NO3− + NO2) fluctuated throughout the experiment. Our results indicate that generally, VB-treated soils had their highest available N around 2 months post termination, while SH-treated soils exhibited significantly higher N values at CC termination time. Sunn hemp + PM (SHM)treatments had highest soil N availability around 4 months after CC termination. Soil enzyme activity results indicate that at CC termination, SHM exhibited the highest levels of β-1-4- glucosidase and β-N-acetylglucosaminidase among all treatments. Overall, SH, SHM, and FM treatments showed the greatest potential for supplementing soil nutrients and organic matter in a no-till fruit production setting

    Influence of Leguminous Cover Crops on Soil Chemical and Biological Properties in a No-Till Tropical Fruit Orchard

    No full text
    South Florida’s agricultural soils are traditionally low in organic matter (OM) and high in carbonate rock fragments. These calcareous soils are inherently nutrient-poor and require management for successful crop production. Sunn hemp (SH, Crotalaria juncea) and velvet bean (VB, Mucuna pruriens) are highly productive leguminous cover crops (CCs) that have shown potential to add large quantities of dry biomass to nutrient- and organic-matter-limited systems. This study focuses on intercropping these two CCs with young carambola (Averrhoa carambola) trees. The objective was to test the effectiveness of green manure crops in providing nutrients and supplementing traditional fertilizer regimes with a sustainable soil-building option. Typically, poultry manure (PM) is the standard fertilizer used in organic or sustainable production in the study area. As such, PM treatments and fallow were included for comparison. The treatments were fallow control (F), fallow with PM (FM), sunn hemp (SH), SH with PM (SHM), velvet bean (VB), and VB with PM (VBM). Sunn hemp and VB were grown for two summer growing seasons. At the end of each 90-day growing period, the CCs were terminated and left on the soil surface to decompose in a no-till fashion. The results suggest that SH treatments produced the greatest amount of dry biomass material ranging from 48 to 71% higher than VB over two growing seasons. As a result, SH CCs also accumulated significantly higher amounts of total carbon (TC) and total nitrogen (TN) within their dry biomass that was added to the soil. Sunn hemp, SHM, and FM treatments showed the greatest accumulation of soil OM, TC, and TN. Soil inorganic N (NH₄⁺ + NO3− + NO2) fluctuated throughout the experiment. Our results indicate that generally, VB-treated soils had their highest available N around 2 months post termination, while SH-treated soils exhibited significantly higher N values at CC termination time. Sunn hemp + PM (SHM)treatments had highest soil N availability around 4 months after CC termination. Soil enzyme activity results indicate that at CC termination, SHM exhibited the highest levels of β-1-4- glucosidase and β-N-acetylglucosaminidase among all treatments. Overall, SH, SHM, and FM treatments showed the greatest potential for supplementing soil nutrients and organic matter in a no-till fruit production setting

    Effect of Glyphosate and Carbaryl Applications on Okra (<i>Abelmoschus esculentus</i>) Biomass and Arbuscular Mycorrhizal Fungi (AMF) Root Colonization in Organic Soil

    No full text
    Pesticide application in horticultural crops has recently multiplied to increase crop yields and boost economic return. Consequently, the effects of pesticides on soil organisms and plant symbionts is an evolving subject of research. In this short-term study, we evaluated the effects of glyphosate (herbicide) and carbaryl (insecticide) on okra biomass and AMF root colonization in both shade house and field settings. An additional treatment, the combination of glyphosate and carbaryl, was applied in the field trial. Soil and root samples were collected three times during the experiment: 30 days after planting (before first spray, or T0), 45 days after planting (before second spray, or T1), and at full maturity (at 66 days after planting, or T2). Our results indicate that glyphosate and combined treatments were most effective in controlling weeds and produced almost 40% higher okra biomass than the control. There was a ~40% increase in AMF root colonization in glyphosate-treated plots from T0 to T1. This result was likely due to high initial soil P content, high soil temperature, and low rainfall, which aided in the rapid degradation of glyphosate in the soil. However, at T2 (second spray), high rainfall and the presence of excess glyphosate resulted in a 15% reduction in AMF root colonization when compared to T1. We found carbaryl had little to negligible effect on AMF root colonization

    Precision Agriculture Application for Sustainable Nitrogen Management of <i>Justicia brandegeana</i> Using Optical Sensor Technology

    No full text
    Over-fertilization is a common practice in ornamental nursery production. Oftentimes, visual analysis is used to determine plant nutrient levels, leading to less accurate estimates of fertilizer application. This study focused on exploring the suitability of two non-destructive sensors, Soil Plant Analysis Development (SPAD-502) and GreenSeekerTM, for measuring plant tissue nutrient uptake. Florikan Top-Dress fertilizer 12N-6P-8K was applied to Justicia brandegeana in various increments (0, 10, 20, 30, 40, and 50 g) to simulate plants with deficient to excessive nitrogen rates. Various parameters were recorded including Normalized Difference Vegetation Index (NDVI) and SPAD readings, soil leachate analysis (nitrates and phosphate), and total leaf carbon:nitrogen (C:N). The NDVI and SPAD readings were recorded biweekly for three months after the initial controlled release fertilizer (CRF) treatments. Leaf C:N was analyzed through dry combustion while nitrates and phosphate were determined from soil leachate. Results suggest that the smaller amount (20 g) of CRF is as effective in providing N to J. brandegeana as larger amounts (30, 40, 50 g). Implementation of this fertilizer regimen will result in reduced agricultural nutrient runoff and overall negative environmental impacts. Application of optical sensor technology using SPAD and GreenSeekerTM showed promising results in determining the fertilizer requirements of J. brandegeana. This method could serve as a guideline for nursery producers and landscape personnel as a fast and non-destructive tool for sustainable fertilizer management practices within the ornamental plant industry

    Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    Get PDF
    Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs). Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests
    corecore