94 research outputs found

    A simple, mass balance model of carbon flow in a controlled ecological life support system

    Get PDF
    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability

    Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    Get PDF
    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions

    Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Get PDF
    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition

    Production of Methane and Water from Crew Plastic Waste

    Get PDF
    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented

    Herbicides in the Soil Environment: Linkage between Bioavailability and Microbial Ecology

    Get PDF
    Modern agriculture relies heavily on herbicides for the control of weeds in crops and pastures to maximize yields and economical benefits to sustain an increasing world population. The introduction of herbicide-resistant traits in several crops, such as glyphosate-resistant soybean, maize and canola, has further increased herbicide consumption worldwide. The environmental fate of herbicides is a matter of recent concern given that only a small fraction of the chemicals reaches the target organisms. While most herbicides are not intentionally applied onto soil, they can enter the soil environment from direct interception of spray by the soil surface during early season or post-harvest applications, from runoff or leaching of the herbicide from vegetation and/or from dead plant material. This chapter will present aspects of the behavior of herbicides in soils, focusing on soil retention and microbial degradation as main factors controlling persistence. The potential impact of herbicides on non-target soil microbes, on their processes and interactions, will be also discussed. The enormous variety of herbicides commercially available today makes it impossible to review all of them. Thus, this work will focus on some of the herbicides most used in the (semiarid) Pampa region of Argentina and worldwide (i.e., glyphosate, 2,4-dichlorophenoxyacetic acid, atrazine, metsulfuron-methyl), based on our own research data. Adsorption to soil is of critical importance for the regulation of herbicide persistence and mobility throughout the environment because sorption processes control the amount of herbicide present in the soil solution. These processes are dependent on several factors related to soil characteristics such as mineral composition, organic matter content, soil solution chemistry and to chemical characteristics of the herbicide. Soil-bound herbicide or residues are temporarily inactivated, which prevents harmful effects on soil biota but also makes them less bio-available for microbial degradation because most microbial species are not able to utilize herbicides in the sorbed state. Herbicide degradation will be discussed both in terms of their use as carbon and nutrient sources. Most isolated herbicide-degrading microorganisms belong to bacterial species, but fungi are also well-known for their capacity to degrade complex substrates, and may be more important than present isolation approaches have suggested. Differential toxicity of herbicides to soil microorganisms may alter community structure, including potential increases in plant or animal pathogens. Herbicides may also cause changes in microbial community function and concomitant impacts on soil health and ecosystem processes.Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Zanini, Graciela Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Bianchinotti, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Gomez, Marisa Anahi. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Garland, Jay L.. Dynamac Corporation; Estados Unido

    “What if There's Something Wrong with Her?”‐How Biomedical Technologies Contribute to Epistemic Injustice in Healthcare

    Get PDF
    While there is a steadily growing literature on epistemic injustice in healthcare, there are few discussions of the role that biomedical technologies play in harming patients in their capacity as knowers. Through an analysis of newborn and pediatric genetic and genomic sequencing technologies (GSTs), I argue that biomedical technologies can lead to epistemic injustice through two primary pathways: epistemic capture and value partitioning. I close by discussing the larger ethical and political context of critical analyses of GSTs and their broader implications for just and equitable healthcare delivery

    Enabling the classroom and the curriculum: higher education, literary studies and disability

    Get PDF
    In this article the tripartite model of disability is applied to the lived experience of twenty-first-century higher education. The tripartite model facilitates a complex understanding of disability that recognises assumptions and discrimination but not at the cost of valued identity. This being so, not only the normative positivisms and non-normative negativisms but also the non-normative positivisms of the classroom and the curriculum are explored. Inclusion is taken as the starting point and the argument progresses to a profound and innovational appreciation of disability. The problem addressed is that inclusion, as shown in The Biopolitics of Disability, constitutes little more than inclusion-ism until disability is recognised in the context of alternative lives and values that neither enforce nor reify normalcy. Informed by this understanding, the article adopts the disciplinary example of literary studies and refers to Brian Friel’s Molly Sweeney as a primary text. The conclusion is that, despite passive and active resistance, disability enters higher education in many ways, most of which are beneficial to students and educators alike

    Taking into account sensory knowledge: the case of geo-techologies for children with visual impairments

    Get PDF
    This paper argues for designing geo-technologies supporting non-visual sensory knowledge. Sensory knowledge refers to the implicit and explicit knowledge guiding our uses of our senses to understand the world. To support our argument, we build on an 18 months field-study on geography classes for primary school children with visual impairments. Our findings show (1) a paradox in the use of non-visual sensory knowledge: described as fundamental to the geography curriculum, it is mostly kept out of school; (2) that accessible geo-technologies in the literature mainly focus on substituting vision with another modality, rather than enabling teachers to build on children's experiences; (3) the importance of the hearing sense in learning about space. We then introduce a probe, a wrist-worn device enabling children to record audio cues during field-trips. By giving importance to children's hearing skills, it modified existing practices and actors' opinions on non-visual sensory knowledge. We conclude by reflecting on design implications, and the role of technologies in valuing diverse ways of understanding the world

    Not forgetting happiness: The tripartite model of disability and its application in literary criticism

    Get PDF
    This interdisciplinary article draws on the social sciences to posit a tripartite model from which literary research into disability can benefit. Ableism and disablism are defined by normative positivisms and non-normative negativisms respectively, but consideration is also given to non-normative positivisms. Informed by experiential knowledge, the model is illustrated with reference to a trilogy of literary representations of blindness: George Sava’s novel Happiness is blind (1987), Brian Friel’s play Molly Sweeney (1994), and Stephen Kuusisto’s memoir Eavesdropping (2006). The result is a complex reading that recognises problems but also non-normative renderings of happiness
    corecore