2,825 research outputs found

    Automatic identification and enumeration of algae

    Get PDF
    A good understanding of the population dynamics of algal communities is vital in many ecological and pollution studies of freshwater and oceanic systems. Present methods require manual counting and identification of algae and can take up to 90 min to obtain a statistically reliable count on a complex population. Several alternative techniques to accelerate the process have been tried on marine samples but none have been completely successful because insufficient effort has been put into verifying the technique before field trials. The objective of the present study has been to assess the potential of in vivo fluorescence of algal pigments as a means of automatically identifying algae. For this work total fluorescence spectroscopy was chosen as the observation technique

    Communities in university mathematics

    Get PDF
    This paper concerns communities of learners and teachers that are formed, develop and interact in university mathematics environments through the theoretical lens of Communities of Practice. From this perspective, learning is described as a process of participation and reification in a community in which individuals belong and form their identity through engagement, imagination and alignment. In addition, when inquiry is considered as a fundamental mode of participation, through critical alignment, the community becomes a Community of Inquiry. We discuss these theoretical underpinnings with examples of their application in research in university mathematics education and, in more detail, in two Research Cases which focus on mathematics students' and teachers' perspectives on proof and on engineering students' conceptual understanding of mathematics. The paper concludes with a critical reflection on the theorising of the role of communities in university level teaching and learning and a consideration of ways forward for future research

    Investigation into the Strouhal numbers associated with vortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions

    Get PDF
    This paper investigates vortex shedding processes occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave. Here the hot-wire anemometry measurement technique is applied to detect the velocity fluctuations due to vortex shedding near the end of the stack. The hot-wire fast time response enables obtaining detailed frequency spectra of the velocity signal, which can be used for identifying the dominant frequencies associated with vortex shedding, and thus allow calculating the corresponding Strouhal numbers. By varying the stack configuration (the plate thickness and spacing) and the acoustic excitation level (the so-called drive ratio), the impact ofthe stack blockage ratio and the Reynolds number on the Strouhal number has been studied in detail. Furthermore, in the range of the Reynolds numbers between 200 and 5,000 a correlation between the Strouhal number and Reynolds number has been obtained and compared with analogous relationships in the steady flow. Particle Image Velocimetry (PIV) is also used to visualize the vortex shedding processes within an acoustic cycle, phase-by-phase, in particular during the part of the cycle when the fluid flows out of the stack – selected cases are shown for comparisons with hotwire measurements

    Selection and experimental evaluation of low-cost porous materials for regenerator applications in thermoacoustic engines

    Get PDF
    This paper aims at evaluating three selected low-cost porous materials from the point of view of their suitability as regenerator materials in the design of thermoacoustic travelling wave engines. The materials tested include: a cellular ceramic substrate with regular square channels; steel “scourers”; and stainless steel “wool”. Comparisons are made against a widely used regenerator material: stainless steel woven wire mesh screen. For meaningful comparisons, the materials are selected to have similar hydraulic radii. One set of regenerators was designed around the hydraulic radius of 200 ÎŒm. This included the ceramic substrate, steel “scourers”, stainless steel “wool” and stacked wire screens (as a reference). This set was complemented by steel “scourers” and stacked wire screens (as a reference) with hydraulic radii of 120 ÎŒm. Therefore six regenerators were produced to carry out the testing. Initial tests were made in a steady air flow to estimate their relative pressure drop due to viscous dissipation. Subsequently, they were installed in a looped-tube travelling-wave thermoacoustic engine to test their relative performance. Testing included the onset temperature difference, the maximum pressure amplitude generated and the acoustic power output as a function of mean pressure between 0 and 10 bar above atmospheric. It appears that the performance of regenerators made out of “scourers” and steel “wool” is much worse than their mesh-screen counterparts of the same hydraulic radius. However cellular ceramics may offer an alternative to traditional regenerator materials to reduce the overall system costs. Detailed discussions are provided

    Properties of low-alloy high-speed steel at elevated temperature

    Get PDF
    This paper presents the results of research on the determination of the coefficient of thermal conductivity and hot hardness of cutters made of selected grades of low-alloy high-speed steels, HS 6-5-2 and HS3-1-2. The investigations of hot hardness and yield stress values of HS6-5-2 steel at elevated temperatures have shown that the hot hardness value decreased to 650 – 700 HV (59 – 60 HRC) in the temperature range of 500 – 550 °C. However, the hardness of the samples preheated to the temperature of 500 – 550 °C and measured at room temperature does not change. A decrease of the hot hardness of the steel is correlated with decreasing yield stress at elevated temperature

    Effect of Axial Agitator Configuration (Up-Pumping, Down-Pumping, Reverse Rotation) on Flow Patterns Generated in Stirred Vessels

    Get PDF
    Single phase turbulent flow in a tank stirred with two different axial impellers - a pitched blade turbine (PBT) and a Mixel TT (MTT)- has been studied using Laser Doppler Velocimetry. The effect of the agitator configuration, i.e. up-pumping, down-pumping and reverse rotation, on the turbulent flow field, as well as power, circulation and pumping numbers has been investigated. An agitation index for each configuration was also determined. In the down-pumping mode, the impellers induced one circulation loop and the upper part of the tank was poorly mixed. When up-pumping, two circulation loops are formed, the second in the upper vessel. The PBT pumping upwards was observed to have a lower flow number and to consume more power than when down-pumping, however the agitation index and circulation efficiencies were notably higher. The MTT has been shown to circulate liquid more efficiently in the up-pumping configuration than in the other two modes. Only small effects of the MTT configuration on the power number, flow number and pumping effectiveness have been observed
    • 

    corecore